Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 381: 109705, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096238

RESUMO

The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.


Assuntos
Neurociências , Roedores , Criação de Animais Domésticos/métodos , Bem-Estar do Animal , Animais , Alimentos , Camundongos
2.
Nature ; 599(7885): 453-457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34754107

RESUMO

Interconnectivity between neocortical areas is critical for sensory integration and sensorimotor transformations1-6. These functions are mediated by heterogeneous inter-areal cortical projection neurons (ICPN), which send axon branches across cortical areas as well as to subcortical targets7-9. Although ICPN are anatomically diverse10-14, they are molecularly homogeneous15, and how the diversity of their anatomical and functional features emerge during development remains largely unknown. Here we address this question by linking the connectome and transcriptome in developing single ICPN of the mouse neocortex using a combination of multiplexed analysis of projections by sequencing16,17 (MAPseq, to identify single-neuron axonal projections) and single-cell RNA sequencing (to identify corresponding gene expression). Focusing on neurons of the primary somatosensory cortex (S1), we reveal a protracted unfolding of the molecular and functional differentiation of motor cortex-projecting ([Formula: see text]) ICPN compared with secondary somatosensory cortex-projecting ([Formula: see text]) ICPN. We identify SOX11 as a temporally differentially expressed transcription factor in [Formula: see text] versus [Formula: see text] ICPN. Postnatal manipulation of SOX11 expression in S1 impaired sensorimotor connectivity and disrupted selective exploratory behaviours in mice. Together, our results reveal that within a single cortical area, different subtypes of ICPN have distinct postnatal paces of molecular differentiation, which are subsequently reflected in distinct circuit connectivities and functions. Dynamic differences in the expression levels of a largely generic set of genes, rather than fundamental differences in the identity of developmental genetic programs, may thus account for the emergence of intra-type diversity in cortical neurons.


Assuntos
Diferenciação Celular , Vias Neurais , Neurônios/citologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Axônios/fisiologia , Conectoma , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Fatores de Transcrição SOXC/genética , Fatores de Tempo , Transcriptoma
3.
Biomed Opt Express ; 9(8): 3624-3639, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338144

RESUMO

Two-photon excitation fluorescence microscopy has revolutionized our understanding of brain structure and function through the high resolution and large penetration depth it offers. Investigating neural structures in vivo requires gaining optical access to the brain, which is typically achieved by replacing a part of the skull with one or several layers of cover glass windows. To compensate for the spherical aberrations caused by the presence of these layers of glass, collar-correction objectives are typically used. However, the efficiency of this correction has been shown to depend significantly on the tilt angle between the glass window surface and the optical axis of the imaging system. Here, we first expand these observations and characterize the effect of the tilt angle on the collected fluorescence signal with thicker windows (double cover slide) and compare these results with an objective devoid of collar-correction. Second, we present a simple optical alignment device designed to rapidly minimize the tilt angle in vivo and align the optical axis of the microscope perpendicularly to the glass window to an angle below 0.25°, thereby significantly improving the imaging quality. Finally, we describe a tilt-correction procedure for users in an in vivo setting, enabling the accurate alignment with a resolution of <0.2° in only few iterations.

4.
Neuropharmacology ; 121: 278-286, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476642

RESUMO

Repetitive stimulation of cognitive forebrain circuits at frequencies capable of inducing corticostriatal long term plasticity is increasingly being used with therapeutic purposes in patients with neuropsychiatric disorders. However, corticostriatal plasticity is rarely studied in the intact brain. Our aim was to study the mechanisms of corticostriatal long term depression (LTD) induced by high frequency stimulation (HFS) of the medial prefrontal cortex in vivo. Our main finding is that the LTD induced in the dorsomedial striatum by medial prefrontal cortex HFS in vivo (prefrontostriatal LTD) is not affected by manipulations that block or reduce the LTD induced in the dorsolateral striatum by motor cortex HFS in brain slices, including pharmacological dopamine receptor and CB1 receptor blockade, chronic nigrostriatal dopamine depletion, CB1 receptor genetic deletion and selective striatal cholinergic interneuron (SCIN) ablation. Conversely, like in the hippocampus and other brain areas, prefrontostriatal LTD is NMDA receptor dependent. Thus, we describe a novel form of corticostriatal LTD that operates in brain circuits involved in reward and cognition and could be relevant for understanding the therapeutic effects of deep brain stimulation.


Assuntos
Corpo Estriado/citologia , Corpo Estriado/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Adrenérgicos/toxicidade , Animais , Animais Recém-Nascidos , Benzazepinas/farmacologia , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Corpo Estriado/lesões , Maleato de Dizocilpina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Neuron ; 93(4): 929-939.e6, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28231470

RESUMO

Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur.


Assuntos
Condicionamento Operante/fisiologia , Retroalimentação Sensorial/fisiologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Aprendizagem/fisiologia , Masculino , Camundongos Transgênicos
6.
Neuropsychopharmacology ; 40(11): 2576-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25872916

RESUMO

Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded. Importantly, some behavioral deficits do not diminish after adolescence but instead worsen or mutate, particularly those related to the exploration of wide and spatially complex environments. The in vivo electrophysiological recordings and morphological reconstructions of striatal medium spiny neurons reveal corticostriatal alterations associated to the behavioral phenotype. More specifically, an attenuation of corticostriatal functional connectivity, affecting medial prefrontal inputs more markedly than cingulate and motor inputs, is accompanied by a contraction of the dendritic arbor of striatal projection neurons in this animal model. Thus, dopaminergic neurons are essential during postnatal development for the functional and structural maturation of corticostriatal connections. From a bottom-up viewpoint, our findings suggest that neuropsychiatric conditions presumably linked to developmental alterations of the dopaminergic system should be evaluated for deficits in foraging decision making, alterations in the recruitment of corticostriatal circuits during foraging tasks, and structural disorganization of the frontostriatal connections.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Comportamento Exploratório/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Corpo Estriado/patologia , Dendritos/patologia , Dendritos/fisiologia , Modelos Animais de Doenças , Eletrodos Implantados , Imuno-Histoquímica , Camundongos , Atividade Motora/fisiologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Oxidopamina , Fenótipo , Comportamento Social , Comportamento Espacial/fisiologia
7.
Nat Methods ; 11(12): 1237-1241, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326662

RESUMO

Targeting visually identified neurons for electrophysiological recording is a fundamental neuroscience technique; however, its potential is hampered by poor visualization of pipette tips in deep brain tissue. We describe quantum dot-coated glass pipettes that provide strong two-photon contrast at deeper penetration depths than those achievable with current methods. We demonstrated the pipettes' utility in targeted patch-clamp recording experiments and single-cell electroporation of identified rat and mouse neurons in vitro and in vivo.


Assuntos
Encéfalo/fisiologia , Eletrofisiologia/métodos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Óptica e Fotônica/instrumentação , Técnicas de Patch-Clamp/métodos , Pontos Quânticos , Animais , Encéfalo/citologia , Eletrofisiologia/instrumentação , Corantes Fluorescentes , Camundongos , Microscopia de Fluorescência/instrumentação , Neurônios/citologia , Óptica e Fotônica/métodos , Técnicas de Patch-Clamp/instrumentação , Ratos
8.
J Physiol Paris ; 106(1-2): 40-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21767642

RESUMO

Up states are a hallmark of striatal physiology. Spontaneous activity in the thalamo-cortical network drives robust plateau depolarizations in the medium spiny projection neurons of the striatum. Medium spiny neuron firing is only possible during up states and is very tightly regulated by dopamine and NMDA receptors. In a rat model of Parkinson's disease the medium spiny neurons projecting to the globus pallidus (indirect pathway) show more depolarized up states and increased firing. This is translated into abnormal patterns of synchronization between the globus pallidus and frontal cortex, which are believed to underlie the symptoms of Parkinson's disease. Here we review our work in the field and propose a mechanism through which the lack of D2 receptor stimulation in the striatum allows the establishment of fixed routes of information flow in the cortico-striato-pallidal network.


Assuntos
Gânglios da Base/fisiologia , Relógios Biológicos/fisiologia , Corpo Estriado/fisiologia , Ativação do Canal Iônico/fisiologia , Animais , Gânglios da Base/efeitos dos fármacos , Corpo Estriado/citologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
PLoS One ; 6(12): e28473, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163020

RESUMO

Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode. Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we characterized the effect of local GABA(A) receptor blockade on striatal field and multiunitary action potential responses to prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 µm from a microdialysis probe. Intrastriatal administration of the GABA(A) receptor antagonist bicuculline increased by 65±7% the duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during GABA(A) receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Potenciais Evocados/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletrodos , Eletrofisiologia/métodos , Masculino , Camundongos , Inibição Neural/fisiologia , Neurônios/fisiologia , Receptores de GABA/metabolismo , Silício/química , Transmissão Sináptica/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/antagonistas & inibidores
10.
Neuropharmacology ; 61(7): 1141-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21276808

RESUMO

Cue-induced cocaine seeking intensifies or incubates after withdrawal from extended access cocaine self-administration, a phenomenon termed incubation of cocaine craving. The expression of incubated craving is mediated by Ca²âº-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). Thus, CP-AMPARs are a potential target for therapeutic intervention, making it important to understand mechanisms that govern their accumulation. Here we used subcellular fractionation and biotinylation of NAc tissue to examine the abundance and distribution of AMPAR subunits, and GluA1 phosphorylation, in the incubation model. We also studied two transmembrane AMPA receptor regulatory proteins (TARPs), γ-2 and γ-4. Our results, together with earlier findings, suggest that some of the new CP-AMPARs are synaptic. These are probably associated with γ-2, but they are loosely tethered to the PSD. Levels of GluA1 phosphorylated at serine 845 (pS845 GluA1) were significantly increased in biotinylated tissue and in an extrasynaptic membrane-enriched fraction. These results suggest that increased synaptic levels of CP-AMPARs may result in part from an increase in pS845 GluA1 in extrasynaptic membranes, given that S845 phosphorylation primes GluA1-containing AMPARs for synaptic insertion and extrasynaptic AMPARs supply the synapse. Some of the new extrasynaptic CP-AMPARs are likely associated with γ-4, rather than γ-2. The maintenance of CP-AMPARs in NAc synapses during withdrawal is accompanied by activation of CaMKII and ERK2 but not CaMKI. Overall, AMPAR plasticity in the incubation model shares some features with better described forms of synaptic plasticity, although the timing of the phenomenon and the persistence of related neuroadaptations are significantly different.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/efeitos adversos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
11.
J Neurosci ; 29(8): 2496-509, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19244524

RESUMO

Altered corticostriatal information processing associated with early dopamine systems dysfunction may contribute to attention deficit/hyperactivity disorder (ADHD). Mice with neonatal dopamine-depleting lesions exhibit hyperactivity that wanes after puberty and is reduced by psychostimulants, reminiscent of some aspects of ADHD. To assess whether the maturation of corticostriatal functional connectivity is altered by early dopamine depletion, we examined preadolescent and postadolescent urethane-anesthetized mice with or without dopamine-depleting lesions. Specifically, we assessed (1) synchronization between striatal neuron discharges and oscillations in frontal cortex field potentials and (2) striatal neuron responses to frontal cortex stimulation. In adult control mice striatal neurons were less spontaneously active, less responsive to cortical stimulation, and more temporally tuned to cortical rhythms than in infants. Striatal neurons from hyperlocomotor mice required more current to respond to cortical input and were less phase locked to ongoing oscillations, resulting in fewer neurons responding to refined cortical commands. By adulthood some electrophysiological deficits waned together with hyperlocomotion, but striatal spontaneous activity remained substantially elevated. Moreover, dopamine-depleted animals showing normal locomotor scores exhibited normal corticostriatal synchronization, suggesting that the lesion allows, but is not sufficient, for the emergence of corticostriatal changes and hyperactivity. Although amphetamine normalized corticostriatal tuning in hyperlocomotor mice, it reduced horizontal activity in dopamine-depleted animals regardless of their locomotor phenotype, suggesting that amphetamine modified locomotion through a parallel mechanism, rather than that modified by dopamine depletion. In summary, functional maturation of striatal activity continues after infancy, and early dopamine depletion delays the maturation of core functional capacities of the corticostriatal system.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Hipercinese/metabolismo , Hipercinese/patologia , Hipercinese/fisiopatologia , Vias Neurais/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fatores Etários , Anfetamina , Animais , Animais Recém-Nascidos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Dopamina/deficiência , Estimulação Elétrica/métodos , Hipercinese/induzido quimicamente , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oxidopamina , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...