Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(20): 16399-409, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22431723

RESUMO

Many plasma membrane proteins are anchored to the membrane via a C-terminal glycosylphosphatidylinositol (GPI) moiety. The GPI anchor is attached to the protein in the endoplasmic reticulum by transamidation, a reaction in which a C-terminal GPI-attachment signal is cleaved off concomitantly with addition of the GPI moiety. GPI-attachment signals are poorly conserved on the sequence level but are all composed of a polar segment that includes the GPI-attachment site followed by a hydrophobic segment located at the very C terminus of the protein. Here, we show that efficient GPI modification requires that the hydrophobicity of the C-terminal segment is "marginal": less hydrophobic than type II transmembrane anchors and more hydrophobic than the most hydrophobic segments found in secreted proteins. We further show that the GPI-attachment signal can be modified by the transamidase irrespective of whether it is first released into the lumen of the endoplasmic reticulum or is retained in the endoplasmic reticulum membrane.


Assuntos
Aminoaciltransferases/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Aminoaciltransferases/genética , Retículo Endoplasmático/genética , Glicosilfosfatidilinositóis/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética
2.
PLoS One ; 6(5): e19677, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21602923

RESUMO

Optimized protocols for achieving high-yield expression, purification and reconstitution of membrane proteins are required to study their structure and function. We previously reported high-level expression in Escherichia coli of active BmrC and BmrD proteins from Bacillus subtilis, previously named YheI and YheH. These proteins are half-transporters which belong to the ABC (ATP-Binding Cassette) superfamily and associate in vivo to form a functional transporter able to efflux drugs. In this report, high-yield purification and functional reconstitution were achieved for the heterodimer BmrC/BmrD. In contrast to other detergents more efficient for solubilizing the transporter, dodecyl-ß-D-maltoside (DDM) maintained it in a drug-sensitive and vanadate-sensitive ATPase-competent state after purification by affinity chromatography. High amounts of pure proteins were obtained which were shown either by analytical ultracentrifugation or gel filtration to form a monodisperse heterodimer in solution, which was notably stable for more than one month at 4°C. Functional reconstitution using different lipid compositions induced an 8-fold increase of the ATPase activity (k(cat)∼5 s(-1)). We further validated that the quality of the purified BmrC/BmrD heterodimer is suitable for structural analyses, as its reconstitution at high protein densities led to the formation of 2-D crystals. Electron microscopy of negatively stained crystals allowed the calculation of a projection map at 20 Å resolution revealing that BmrC/BmrD might assemble into oligomers in a lipidic environment.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Multimerização Proteica , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalização , Escherichia coli/genética , Glucosídeos , Lipídeos , Proteínas de Membrana Transportadoras/isolamento & purificação , Microscopia Eletrônica , Estabilidade Proteica
3.
PLoS One ; 6(3): e18036, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483854

RESUMO

BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may contribute to the membrane protein crystallization field.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Daunorrubicina/química , Daunorrubicina/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência , Difração de Raios X
4.
Biochim Biophys Acta ; 1788(3): 615-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19167342

RESUMO

ABC (ATP-binding cassette) transporters form the largest family of membrane proteins in micro-organisms where they are able to transport a wide variety of substrates against a concentration gradient, in an ATP-dependent process. Two genes from the same putative Bacillus subtilis operon, yheI and yheH, encoding possibly two different ABC transporters, were overexpressed in Escherichia coli in high yield, either separately or jointly. Using membrane vesicles, it is shown here that both subunits were required to detect, (i) the transport of four structurally unrelated drugs, and (ii) a vanadate-sensitive ATPase activity. Mutation of the invariant Walker-A lysine to an alanine residue in both subunits led to an inactive transporter. Moreover, after membrane solubilization by detergent, both wild-type subunits co-purified on a Ni-Agarose affinity column while only the YheH subunit contained a hexa-histidine tag. This shows that YheI and YheH are indeed able to interact together to form a heterodimer. Importantly, expression of both yheI and yheH genes in B. subtilis could be strongly stimulated by addition of sub-inhibitory concentrations of various unrelated antibiotics. Therefore, B. subtilis YheI/YheH forms a new heterodimeric multidrug ABC transporter possibly involved in multiple antibiotic resistance in vivo.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Dimerização , Óperon
5.
Eur J Biochem ; 269(13): 3313-20, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12084073

RESUMO

Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting beta cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ácido Glutâmico/metabolismo , Sistema Hematopoético/crescimento & desenvolvimento , Sistema Hematopoético/metabolismo , Humanos , Fígado/embriologia , Fígado/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...