Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 26(8): 1006-1022, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32295863

RESUMO

Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. However, most transcriptomic studies do not distinguish the relative contribution of transcription, RNA processing, and RNA degradation processes to cellular homeostasis. Here we used metabolic labeling followed by massive parallel sequencing of newly transcribed and preexisting RNA fractions to simultaneously analyze RNA synthesis and decay in primary endothelial cells exposed to low oxygen tension. We found that changes in transcription rates induced by hypoxia are the major determinant of changes in RNA levels. However, degradation rates also had a significant contribution, accounting for 24% of the observed variability in total mRNA. In addition, our results indicated that hypoxia led to a reduction of the overall mRNA stability from a median half-life in normoxia of 8.7 h, to 5.7 h in hypoxia. Analysis of RNA content per cell confirmed a decrease of both mRNA and total RNA in hypoxic samples and that this effect is dependent on the EGLN/HIF/TSC2 axis. This effect could potentially contribute to fundamental global responses such as inhibition of translation in hypoxia. In summary, our study provides a quantitative analysis of the contribution of RNA synthesis and stability to the transcriptional response to hypoxia and uncovers an unexpected effect on the latter.


Assuntos
Hipóxia Celular/genética , Estabilidade de RNA/genética , RNA/genética , RNA/metabolismo , Transcrição Gênica/genética , Células Cultivadas , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...