Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895354

RESUMO

Thyroid receptor signaling controls major physiological processes and disrupted signaling can cause severe disorders that negatively impact human life. Consequently, methods to detect thyroid receptor ligands are of great toxicologic and pharmacologic importance. Previously, we reported thyroid receptor ligand detection with cell-free protein synthesis of a chimeric fusion protein composed of the human thyroid receptor beta (hTRß) receptor activator and a ß-lactamase reporter. Here, we report a 60% reduction in sensing cost by reengineering the chimeric fusion protein biosensor to include a reporter system composed of either the full-length beta galactosidase (ß-gal), the alpha fragment of ß-gal (ß-gal-α), or a split alpha fragment of the ß-gal (split ß-gal-α). These biosensor constructs are deployed using E. coli XL1-Blue cell extract to (1) avoid the ß-gal background activity abundant in BL21 cell extract and (2) facilitate ß-gal complementation reporter activity to detect human thyroid receptor ligands. These results constitute a promising platform for high throughput screening and potentially the portable detection of human thyroid receptor ligands.

2.
Biotechnol J ; 17(2): e2100152, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761537

RESUMO

Nuclear receptors (NRs) influence nearly every system of the body and our lives depend on correct NR signaling. Thus, a key environmental and pharmaceutical quest is to identify and detect chemicals which interact with nuclear hormone receptors, including endocrine disrupting chemicals (EDCs), therapeutic receptor modulators, and natural hormones. Previously reported biosensors of nuclear hormone receptor ligands facilitated rapid detection of NR ligands using cell-free protein synthesis (CFPS). In this work, the advantages of CFPS are further leveraged and combined with kinetic analysis, autoradiography, and western blot to elucidate the molecular mechanism of this biosensor. Additionally, mathematical simulations of enzyme kinetics are used to optimize the biosensor assay, ultimately lengthening its readable window by five-fold and improving sensor signal strength by two-fold. This approach enabled the creation of an on-demand thyroid hormone biosensor with an observable color-change readout. This mathematical and experimental approach provides insight for engineering rapid and field-deployable CFPS biosensors and promises to improve methods for detecting natural hormones, therapeutic receptor modulators, and EDCs.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos , Hormônios , Cinética , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...