Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 409, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058461

RESUMO

Glaciers and ice caps are experiencing strong mass losses worldwide, challenging water availability, hydropower generation, and ecosystems. Here, we perform the first-ever glacier evolution projections based on deep learning by modelling the 21st century glacier evolution in the French Alps. By the end of the century, we predict a glacier volume loss between 75 and 88%. Deep learning captures a nonlinear response of glaciers to air temperature and precipitation, improving the representation of extreme mass balance rates compared to linear statistical and temperature-index models. Our results confirm an over-sensitivity of temperature-index models, often used by large-scale studies, to future warming. We argue that such models can be suitable for steep mountain glaciers. However, glacier projections under low-emission scenarios and the behaviour of flatter glaciers and ice caps are likely to be biased by mass balance models with linear sensitivities, introducing long-term biases in sea-level rise and water resources projections.

2.
NAR Genom Bioinform ; 3(3): lqab067, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34377978

RESUMO

Viruses are abundant, diverse and ancestral biological entities. Their diversity is high, both in terms of the number of different protein families encountered and in the sequence heterogeneity of each protein family. The recent increase in sequenced viral genomes constitutes a great opportunity to gain new insights into this diversity and consequently urges the development of annotation resources to help functional and comparative analysis. Here, we introduce PHROG (Prokaryotic Virus Remote Homologous Groups), a library of viral protein families generated using a new clustering approach based on remote homology detection by HMM profile-profile comparisons. Considering 17 473 reference (pro)viruses of prokaryotes, 868 340 of the total 938 864 proteins were grouped into 38 880 clusters that proved to be a 2-fold deeper clustering than using a classical strategy based on BLAST-like similarity searches, and yet to remain homogeneous. Manual inspection of similarities to various reference sequence databases led to the annotation of 5108 clusters (containing 50.6 % of the total protein dataset) with 705 different annotation terms, included in 9 functional categories, specifically designed for viruses. Hopefully, PHROG will be a useful tool to better annotate future prokaryotic viral sequences thus helping the scientific community to better understand the evolution and ecology of these entities.

3.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34114607

RESUMO

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Assuntos
Genoma Viral/genética , Metagenômica , Bioprospecção/organização & administração , Biologia Computacional , Bases de Dados Genéticas , Europa (Continente) , Fontes Hidrotermais/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroma/genética , Vírus/classificação , Vírus/genética
4.
Bioinformatics ; 37(19): 3364-3366, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33792634

RESUMO

SUMMARY: SpacePHARER (CRISPR Spacer Phage-Host Pair Finder) is a sensitive and fast tool for de novo prediction of phage-host relationships via identifying phage genomes that match CRISPR spacers in genomic or metagenomic data. SpacePHARER gains sensitivity by comparing spacers and phages at the protein level, optimizing its scores for matching very short sequences, and combining evidence from multiple matches, while controlling for false positives. We demonstrate SpacePHARER by searching a comprehensive spacer list against all complete phage genomes. AVAILABILITY AND IMPLEMENTATION: SpacePHARER is available as an open-source (GPLv3), user-friendly command-line software for Linux and macOS: https://github.com/soedinglab/spacepharer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Bioinformatics ; 33(19): 3113-3114, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957499

RESUMO

SUMMARY: WIsH predicts prokaryotic hosts of phages from their genomic sequences. It achieves 63% mean accuracy when predicting the host genus among 20 genera for 3 kbp-long phage contigs. Over the best current tool, WisH shows much improved accuracy on phage sequences of a few kbp length and runs hundreds of times faster, making it suited for metagenomics studies. AVAILABILITY AND IMPLEMENTATION: OpenMP-parallelized GPL-licensed C ++ code available at https://github.com/soedinglab/wish. CONTACT: clovis.galiez@mpibpc.mpg.de or soeding@mpibpc.mpg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bacteriófagos/genética , Metagenômica/métodos , Software , Archaea/virologia , Bactérias/virologia , Mapeamento de Sequências Contíguas
6.
Nucleic Acids Res ; 45(D1): D170-D176, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899574

RESUMO

We present three clustered protein sequence databases, Uniclust90, Uniclust50, Uniclust30 and three databases of multiple sequence alignments (MSAs), Uniboost10, Uniboost20 and Uniboost30, as a resource for protein sequence analysis, function prediction and sequence searches. The Uniclust databases cluster UniProtKB sequences at the level of 90%, 50% and 30% pairwise sequence identity. Uniclust90 and Uniclust50 clusters showed better consistency of functional annotation than those of UniRef90 and UniRef50, owing to an optimised clustering pipeline that runs with our MMseqs2 software for fast and sensitive protein sequence searching and clustering. Uniclust sequences are annotated with matches to Pfam, SCOP domains, and proteins in the PDB, using our HHblits homology detection tool. Due to its high sensitivity, Uniclust contains 17% more Pfam domain annotations than UniProt. Uniboost MSAs of three diversities are built by enriching the Uniclust30 MSAs with local sequence matches from MMseqs2 profile searches through Uniclust30. All databases can be downloaded from the Uniclust server at uniclust.mmseqs.com. Users can search clusters by keywords and explore their MSAs, taxonomic representation, and annotations. Uniclust is updated every two months with the new UniProt release.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Software , Análise por Conglomerados , Ontologia Genética , Anotação de Sequência Molecular , Navegador
7.
Bioinformatics ; 32(9): 1405-7, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733451

RESUMO

MOTIVATION: Not only sequence data continue to outpace annotation information, but also the problem is further exacerbated when organisms are underrepresented in the annotation databases. This is the case with non-human-pathogenic viruses which occur frequently in metagenomic projects. Thus, there is a need for tools capable of detecting and classifying viral sequences. RESULTS: We describe VIRALpro a new effective tool for identifying capsid and tail protein sequences, which are the cornerstones toward viral sequence annotation and viral genome classification. AVAILABILITY AND IMPLEMENTATION: The data, software and corresponding web server are available from http://scratch.proteomics.ics.uci.edu as part of the SCRATCH suite. CONTACT: clovis.galiez@inria.fr or pfbaldi@uci.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Capsídeo , Genoma Viral , Software , Sequência de Aminoácidos , Humanos
8.
BMC Bioinformatics ; 16: 256, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26268224

RESUMO

BACKGROUND: In structural bioinformatics, there is an increasing interest in identifying and understanding the evolution of local protein structures regarded as key structural or functional protein building blocks. A central need is then to compare these, possibly short, fragments by measuring efficiently and accurately their (dis)similarity. Progress towards this goal has given rise to scores enabling to assess the strong similarity of fragments. Yet, there is still a lack of more progressive scores, with meaningful intermediate values, for the comparison, retrieval or clustering of distantly related fragments. RESULTS: We introduce here the Amplitude Spectrum Distance (ASD), a novel way of comparing protein fragments based on the discrete Fourier transform of their C(α) distance matrix. Defined as the distance between their amplitude spectra, ASD can be computed efficiently and provides a parameter-free measure of the global shape dissimilarity of two fragments. ASD inherits from nice theoretical properties, making it tolerant to shifts, insertions, deletions, circular permutations or sequence reversals while satisfying the triangle inequality. The practical interest of ASD with respect to RMSD, RMSDd, BC and TM scores is illustrated through zinc finger retrieval experiments and concrete structure examples. The benefits of ASD are also illustrated by two additional clustering experiments: domain linkers fragments and complementarity-determining regions of antibodies. CONCLUSIONS: Taking advantage of the Fourier transform to compare fragments at a global shape level, ASD is an objective and progressive measure taking into account the whole fragments. Its practical computation time and its properties make ASD particularly relevant for applications requiring meaningful measures on distantly related protein fragments, such as similar fragments retrieval asking for high recalls as shown in the experiments, or for any application taking also advantage of triangle inequality, such as fragments clustering. ASD program and source code are freely available at: http://www.irisa.fr/dyliss/public/ASD/.


Assuntos
Algoritmos , Biologia Computacional/métodos , Fragmentos de Peptídeos/química , Proteínas/química , Análise de Sequência de Proteína/métodos , Análise por Conglomerados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...