Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Chem Eng Data ; 69(2): 650-678, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352073

RESUMO

The prediction of the thermodynamic properties of lactones is an important challenge in the flavor, fragrance, and pharmaceutical industries. Here, we develop a predictive model of the phase behavior of binary mixtures of lactones with hydrocarbons, alcohols, ketones, esters, aromatic compounds, water, and carbon dioxide. We extend the group-parameter matrix of the statistical associating fluid theory SAFT-γ Mie group-contribution method by defining a new cyclic ester group, denoted cCOO. The group is composed of two spherical Mie segments and two association electron-donating sites of type e1 that can interact with association electron-accepting sites of type H in other molecules. The model parameters of the new cCOO group interactions (1 like interaction and 17 unlike interactions) are characterized to represent target experimental data of physical properties of pure fluids (vapor pressure, single-phase density, and vaporization enthalpy) and mixtures (vapor-liquid equilibria, liquid-liquid equilibria, solid-liquid equilibria, density, and excess enthalpy). The robustness of the model is assessed by comparing theoretical predictions with experimental data, mainly for oxolan-2-one, 5-methyloxolan-2-one, and oxepan-2-one (also referred to as γ-butyrolactone, γ-valerolactone, and ε-caprolactone, respectively). The calculations are found to be in very good quantitative agreement with experiments. The proposed model allows for accurate predictions of the thermodynamic properties and highly nonideal phase behavior of the systems of interest, such as azeotrope compositions. It can be used to support the development of novel molecules and manufacturing processes.

2.
Ind Eng Chem Res ; 62(2): 874-880, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36692415

RESUMO

The combination of ethyl (hydroxyimino)cyanoacetate (Oxyma) and diisopropylcarbodiimide (DIC) has demonstrated superior performance in amino acid activation for peptide synthesis. However, it was recently reported that Oxyma and DIC could react to generate undesired hydrogen cyanide (HCN) at 20 °C, raising safety concerns for the practical use of this activation strategy. To help minimize the risks, there is a need for a comprehensive investigation of the mechanism and kinetics of the generation of HCN. Here we show the results of the first systematic computational study of the underpinning mechanism, including comparisons with experimental data. Two pathways for the decomposition of the Oxyma/DIC adduct are derived to account for the generation of HCN and its accompanying cyclic product. These two mechanisms differ in the electrophilic carbon atom attacked by the nucleophilic sp2-nitrogen in the cyclization step and in the cyclic product generated. On the basis of computed "observed" activation energies, ΔG obs ⧧, the mechanism that proceeds via the attack of the sp2-nitrogen at the oxime carbon is identified as the most kinetically favorable one, a conclusion that is supported by closer agreement between predicted and experimental 13C NMR data. These results can provide a theoretical basis to develop a design strategy for suppressing HCN generation when using Oxyma/DIC for amino acid activation.

3.
Macromolecules ; 56(24): 9952-9968, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38161323

RESUMO

A recently developed statistical-mechanical model is applied systematically to estimate the fraction of tie-molecules (polymer chains linking different crystals directly or via entanglements) in semicrystalline polyethylene (PE) samples. The amorphous domains of the polymer are divided into constrained interlamellar domains and "free" outer-lamellar domains. A set of model parameters is assigned to each sample by correlating previous experimental measurements and minimizing the difference between the predicted solubility of pure hydrocarbons in the sample and the experimental values. We show that the sorption isotherms of multiple pure fluids in each sample can be described by a single parameter set, proving that the polymer-solute interactions (described accurately by the SAFT-γ Mie EoS) are decoupled from the sample-specific properties of the polymer. We find that ∼30% of the crystalline stems in the lamellae of PE are connected to tie-molecules, within the bounds suggested by previous theoretical and computational work. The transferability of the sample-specific parameters is assessed by predicting cosolubility effects and solubility at different temperatures, leading to good agreement with experimental data.

4.
J Phys Chem B ; 126(47): 9821-9839, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395498

RESUMO

Developing molecular equations of state to treat electrolyte solutions is challenging due to the long-range nature of the Coulombic interactions. Seminal approaches commonly used are the mean spherical approximation (MSA) and the Debye-Hückel (DH) theory to account for ion-ion interactions and, often, the Born theory of solvation for ion-solvent interactions. We investigate the accuracy of the MSA and DH approaches using each to calculate the contribution of the ion-ion interactions to the chemical potential of NaCl in water, comparing these with newly computer-generated simulation data; the ion-ion contribution is isolated by selecting an appropriate primitive model with a Lennard-Jones force field to describe the solvent. A study of mixtures with different concentrations and ionic strengths reveals that the calculations from both MSA and DH theories are of similar accuracy, with the MSA approach resulting in marginally better agreement with the simulation data. We also demonstrate that the Born theory provides a good qualitative description of the contribution of the ion-solvent interactions; we employ an explicitly polar water model in these simulations. Quantitative agreement up to moderate salt concentrations and across the relevant range of temperature is achieved by adjusting the Born radius using simulation data of the free energy of solvation. We compute the radial and orientational distribution functions of the systems, thereby providing further insight on the differences observed between the theory and simulation. We thus provide rigorous benchmarks for use of the MSA, DH, and Born theories as perturbation approaches, which will be of value for improving existing models of electrolyte solutions, especially in the context of equations of state.


Assuntos
Cloreto de Sódio , Água , Solventes , Termodinâmica , Simulação por Computador , Temperatura
5.
J Phys Chem B ; 126(44): 9059-9088, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318751

RESUMO

Predicting the absorption of gases and liquids in semicrystalline polymers is of critical importance for numerous applications; the mechanical and transport properties of these materials are highly dependent on the amount of solutes dissolved in their bulk. For most semicrystalline polymers which are in contact with an external fluid, the observed uptake of the solute is found to be lower than that predicted by treating the amorphous domains of the polymer as subcooled polymer melts at the same thermodynamic state. This observation has recently led to the hypothesis that the amorphous domains effectively behave as polymer liquids subject to an additional "constraint pressure" which reduces the equilibrium solubility in the domains. We present a new statistical mechanical model of semicrystalline polymers. The constraint pressure emerges naturally from our treatment, as a property of the interlamellar amorphous domains caused by the stretching and localization in space of the tie-molecules (polymer chains linking different lamellae). By assuming that the interlamellar domains exchange monomers reversibly with the lamellae, the model allows one to simultaneously predict the increase of constraint pressure at low temperatures and the variation of the lamellar thickness as a function of temperature─a phenomenon known as premelting. The sorption isotherms of a range of fluids in different polyethylene and polypropylene samples are determined experimentally and the data is compared with calculations of the new model using the SAFT-VR Mie EoS. In order to accurately predict the absorption close to the vapor pressure of the penetrant, we find that it is essential to include the "free", unconstrained amorphous domains in the description, resulting in a multiscale model with two adjustable parameters (the fractions of tie-molecules and free amorphous domains) that characterize the morphology of a given semicrystalline polymer sample. The trends observed for the adjusted parameters qualitatively match other estimates reported in the literature.

6.
Org Process Res Dev ; 25(5): 1123-1142, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34295139

RESUMO

Choosing a solvent and an antisolvent for a new crystallization process is challenging due to the sheer number of possible solvent mixtures and the impact of solvent composition and crystallization temperature on process performance. To facilitate this choice, we present a general computer aided mixture/blend design (CAMbD) formulation for the design of optimal solvent mixtures for the crystallization of pharmaceutical products. The proposed methodology enables the simultaneous identification of the optimal process temperature, solvent, antisolvent, and composition of solvent mixture. The SAFT-γ Mie group-contribution approach is used in the design of crystallization solvents; based on an equilibrium model, both the crystal yield and solvent consumption are considered. The design formulation is implemented in gPROMS and applied to the crystallization of lovastatin and ibuprofen, where a hybrid approach combining cooling and antisolvent crystallization is compared to each method alone. For lovastatin, the use of a hybrid approach leads to an increase in crystal yield compared to antisolvent crystallization or cooling crystallization. Furthermore, it is seen that using less volatile but powerful crystallization solvents at lower temperatures can lead to better performance. When considering ibuprofen, the hybrid and antisolvent crystallization techniques provide a similar performance, but the use of solvent mixtures throughout the crystallization is critical in maximizing crystal yields and minimizing solvent consumption. We show that our more general approach to rational design of solvent blends brings significant benefits for the design of crystallization processes in pharmaceutical and chemical manufacturing.

7.
Phys Chem Chem Phys ; 23(10): 5936-5944, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666204

RESUMO

Water + elastin-like polypeptides (ELPs) exhibit a transition temperature below which the chains transform from collapsed to expanded states, reminiscent of the cold denaturation of proteins. This conformational change coincides with liquid-liquid phase separation. A statistical-thermodynamics theory is used to model the fluid-phase behavior of ELPs in aqueous solution and to extrapolate the behavior at ambient conditions over a range of pressures. At low pressures, closed-loop liquid-liquid equilibrium phase behavior is found, which is consistent with that of other hydrogen-bonding solvent + polymer mixtures. At pressures evocative of deep-sea conditions, liquid-liquid immiscibility bounded by two lower critical solution temperatures (LCSTs) is predicted. As pressure is increased further, the system exhibits two separate regions of closed-loop of liquid-liquid equilibrium (LLE). The observation of bimodal LCSTs and two re-entrant LLE regions herald a new type of binary global phase diagram: Type XII. At high-ELP concentrations the predicted phase diagram resembles a protein pressure denaturation diagram; possible "molten-globule"-like states are observed at low concentration.


Assuntos
Elastina/química , Peptídeos/química , Simulação por Computador , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Transição de Fase , Solventes/química , Termodinâmica , Temperatura de Transição
8.
Phys Chem Chem Phys ; 22(27): 15248-15269, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32609107

RESUMO

The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes. We extend the SAFT-VRE Mie equation of state [D. K. Eriksen et al., Mol. Phys., 2016, 114, 2724-2749] to study aqueous solutions of nitric, sulphuric, and carbonic acids, considering complete and partially dissociated models. In order to incorporate the dissociation equilibria, correlations to experimental data for the relevant thermodynamic equilibrium constants of the dissociation reactions are taken from the literature and are imposed as a boundary condition in the calculations. The models for water, the hydronium ion, and carbon dioxide are treated as transferable and are taken from our previous work. We present new molecular models for nitric acid, and the nitrate, bisulfate, sulfate, and bicarbonate anions. The resulting framework is used to predict a range of phase behaviour and solution properties of the aqueous acids over wide ranges of concentration and temperature, including the degree of dissociation, as well as the activity coefficients of the ionic species, and the activity of water and osmotic coefficient, density, and vapour pressure of the solutions. The SAFT-VRE Mie models obtained in this manner provide a means of elucidating the mechanisms of association and ion pairing in the systems studied, complementing the experimental observations reported in the literature.

10.
Phys Chem Chem Phys ; 21(46): 25558-25568, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31538169

RESUMO

Coarse-grained, two-body fluid-solid potentials provide a simple way to describe the interaction between a fluid molecule and a solid in adsorption theories, and also a means to reduce the computational expense in molecular simulations, compared to those employing full atomistic detail. Here we investigate the applicability of a recently proposed mapping procedure to obtain free-energy-averaged (FEA) fluid-solid interactions for fluids on various heterogeneous surfaces. Methane and graphite are chosen as the fluid and the solid, respectively, and the surface graphene layer is modified to create chemical and geometrical heterogeneities; for the latter surfaces, the FEA mapping is appropriately modified to account for vacancies. Adsorption isotherms and fluid density profiles are obtained by performing grand canonical Monte Carlo (GCMC) simulations for explicit-solid and FEA-potential representations, and are compared to gain insights about the applicability and limitations of the FEA potentials. For solids with homogeneous and chemically heterogeneous surfaces, adsorption isotherms and density profiles obtained using FEA potentials are in good agreement with those obtained using an explicit-solid representation. For surfaces containing vacancies, isotherms and density profiles obtained using the unmodified FEA potential differ significantly from their explicit-surface analogues. When using the FEA potential obtained with the modified mapping procedure some deviations are still seen at very high pressure, however, at low to moderate pressures, agreement is, once again, good.

11.
Phys Chem Chem Phys ; 21(25): 13706-13720, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31204418

RESUMO

Due to the importance of the Gibbs free energy of solvation in understanding many physicochemical phenomena, including lipophilicity, phase equilibria and liquid-phase reaction equilibrium and kinetics, there is a need for predictive models that can be applied across large sets of solvents and solutes. In this paper, we propose two quantitative structure property relationships (QSPRs) to predict the Gibbs free energy of solvation, developed using partial least squares (PLS) and multivariate linear regression (MLR) methods for 295 solutes in 210 solvents with total number of data points of 1777. Unlike other QSPR models, the proposed models are not restricted to a specific solvent or solute. Furthermore, while most QSPR models include either experimental or quantum mechanical descriptors, the proposed models combine both, using experimental descriptors to represent the solvent and quantum mechanical descriptors to represent the solute. Up to twelve experimental descriptors and nine quantum mechanical descriptors are considered in the proposed models. Extensive internal and external validation is undertaken to assess model accuracy in predicting the Gibbs free energy of solvation for a large number of solute/solvent pairs. The best MLR model, which includes three solute descriptors and two solvent properties, yields a coefficient of determination (R2) of 0.88 and a root mean squared error (RMSE) of 0.59 kcal mol-1 for the training set. The best PLS model includes six latent variables, and has an R2 value of 0.91 and a RMSE of 0.52 kcal mol-1. The proposed models are compared to selected results based on continuum solvation quantum chemistry calculations. They enable the fast prediction of the Gibbs free energy of solvation of a wide range of solutes in different solvents.

12.
RSC Adv ; 9(65): 38017-38031, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541791

RESUMO

Deep-eutectic solvents and room temperature ionic liquids are increasingly recognised as appropriate materials for use as active pharmaceutical ingredients and formulation additives. Aqueous mixtures of choline and geranate (CAGE), in particular, have been shown to offer promising biomedical properties but understanding the thermophysical behaviour of these mixtures remains limited. Here, we develop interaction potentials for use in the SAFT-γ Mie group-contribution approach, to study the thermodynamic properties and phase behaviour of aqueous mixtures of choline geranate and geranic acid. The determination of the interaction parameters between chemical functional groups is carried out in a sequential fashion, characterising each group based on those previously developed. The parameters of the groups relevant to geranic acid are estimated using experimental fluid phase-equilibrium data such as vapour pressure and saturated-liquid density of simple pure components (n-alkenes, branched alkenes and carboxylic acids) and the phase equilibrium data of mixtures (aqueous solutions of branched alkenes and of carboxylic acids). Geranate is represented by further incorporating the anionic carboxylate group, COO-, which is characterised using aqueous solution data of sodium carboxylate salts, assuming full dissociation of the salt in water. Choline is described by incorporating the cationic quaternary ammonium group, N+, using data for choline chloride solutions. The osmotic pressure of aqueous mixtures of CAGE at several concentrations is predicted and compared to experimental data obtained as part of our work to assess the accuracy of the modelling platform. The SAFT-γ Mie approach is shown to be predictive, providing a good description of the measured data for a wide range of mixtures and properties. Furthermore, the new group-interaction parameters needed to represent CAGE extend the set of functional groups of the group-contribution approach, and can be used in a transferable way to predict the properties of systems beyond those studied in the current work.

13.
J Phys Chem B ; 122(39): 9161-9177, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30179489

RESUMO

The SAFT-γ Mie group-contribution equation of state [ Papaioannou J. Chem. Phys. 2014 , 140 , 054107 ] is used to develop a transferable coarse-grained (CG) force-field suitable for the molecular simulation of linear alkanes. A heterogroup model is fashioned at the resolution of three carbon atoms per bead in which different Mie (generalized Lennard-Jones) interactions are used to characterize the terminal (CH3-CH2-CH2-) and middle (-CH2-CH2-CH2-) beads. The force field is developed by combining the SAFT-γ CG top-down approach [ Avendaño J. Phys. Chem. B 2011 , 115 , 11154 ], using experimental phase-equilibrium data for n-alkanes ranging from n-nonane to n-pentadecane to parametrize the intermolecular (nonbonded) bead-bead interactions, with a bottom-up approach relying on simulations based on the higher resolution TraPPE united-atom (UA) model [ Martin ; , Siepmann J. Phys. Chem. B 1998 , 102 , 2569 ] to establish the intramolecular (bonded) interactions. The transferability of the SAFT-γ CG model is assessed from a detailed examination of the properties of linear alkanes ranging from n-hexane ( n-C6H14) to n-octadecane ( n-C18H38), including an additional evaluation of the reliability of the description for longer chains such as n-hexacontane ( n-C60H122) and a prototypical linear polyethylene of moderate molecular weight ( n-C900H1802). A variety of structural, thermodynamic, and transport properties are examined, including the pair distribution functions, vapor-liquid equilibria, interfacial tension, viscosity, and diffusivity. Particular focus is placed on the impact of incorporating intramolecular interactions on the accuracy, transferability, and representability of the CG model. The novel SAFT-γ CG force field is shown to provide a reliable description of the thermophysical properties of the n-alkanes, in most cases at a level comparable to the that obtained with higher resolution models.

14.
J Chem Phys ; 148(16): 164704, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716213

RESUMO

We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

15.
Langmuir ; 33(42): 11733-11745, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789526

RESUMO

The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG)n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG)30; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG)30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.

16.
Faraday Discuss ; 192: 337-390, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27604680

RESUMO

Predictive models play an important role in the design of post-combustion processes for the capture of carbon dioxide (CO2) emitted from power plants. A rate-based absorber model is presented to investigate the reactive capture of CO2 using aqueous monoethanolamine (MEA) as a solvent, integrating a predictive molecular-based equation of state: SAFT-VR SW (Statistical Associating Fluid Theory-Variable Range, Square Well). A distinctive physical approach is adopted to model the chemical equilibria inherent in the process. This eliminates the need to consider reaction products explicitly and greatly reduces the amount of experimental data required to model the absorber compared to the more commonly employed chemical approaches. The predictive capabilities of the absorber model are analyzed for profiles from 10 pilot plant runs by considering two scenarios: (i) no pilot-plant data are used in the model development; (ii) only a limited set of pilot-plant data are used. Within the first scenario, the mass fraction of CO2 in the clean gas is underestimated in all but one of the cases, indicating that a best-case performance of the solvent can be obtained with this predictive approach. Within the second scenario a single parameter is estimated based on data from a single pilot plant run to correct for the dramatic changes in the diffusivity of CO2 in the reactive solvent. This parameter is found to be transferable for a broad range of operating conditions. A sensitivity analysis is then conducted, and the liquid viscosity and diffusivity are found to be key properties for the prediction of the composition profiles. The temperature and composition profiles are sensitive to thermodynamic properties that correspond to major sources of heat generation or dissipation. The proposed modelling framework can be used as an early assessment of solvents to aid in narrowing the search space, and can help in determining target solvents for experiments and more detailed modelling.

17.
J Chem Phys ; 141(15): 154101, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338875

RESUMO

Molecular Dynamics simulations are performed to study the dynamical properties of molecules in the presence of a liquid-liquid (L/L) interface. In the vicinity of the interface the movement of the particles, coupled with the thermal fluctuations of the interface, can make the evaluation of properties such as the self-diffusion coefficient, particularly difficult. We explore the use of the Evans-Searles Fluctuation Theorem [D. Evans and D. Searles, Phys. Rev. E 50, 1645 (1994)] to obtain dynamical information of molecules in distinct regions of a model L/L system. We demonstrate that it is possible to analyse the effect of the interface on the mobility of molecules using a nonequilibrium approach. This information may provide a valuable insight into the understanding of dynamics of interphase mass transfer.

18.
World J Diabetes ; 5(4): 444-70, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25126392

RESUMO

Diabetes mellitus is a chronic condition that occurs when the body cannot produce enough or effectively use of insulin. Compared with individuals without diabetes, patients with type 2 diabetes mellitus have a considerably higher risk of cardiovascular morbidity and mortality, and are disproportionately affected by cardiovascular disease. Most of this excess risk is it associated with an augmented prevalence of well-known risk factors such as hypertension, dyslipidaemia and obesity in these patients. However the improved cardiovascular disease in type 2 diabetes mellitus patients can not be attributed solely to the higher prevalence of traditional risk factors. Therefore other non-traditional risk factors may be important in people with type 2 diabetes mellitus. Cardiovascular disease is increased in type 2 diabetes mellitus subjects due to a complex combination of various traditional and non-traditional risk factors that have an important role to play in the beginning and the evolution of atherosclerosis over its long natural history from endothelial function to clinical events. Many of these risk factors could be common history for both diabetes mellitus and cardiovascular disease, reinforcing the postulate that both disorders come independently from "common soil". The objective of this review is to highlight the weight of traditional and non-traditional risk factors for cardiovascular disease in the setting of type 2 diabetes mellitus and discuss their position in the pathogenesis of the excess cardiovascular disease mortality and morbidity in these patients.

19.
J Chem Phys ; 140(5): 054107, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511922

RESUMO

A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.

20.
Nat Chem ; 5(11): 952-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24153374

RESUMO

Solvents can significantly alter the rates and selectivity of liquid-phase organic reactions, often hindering the development of new synthetic routes or, if chosen wisely, facilitating routes by improving rates and selectivities. To address this challenge, a systematic methodology is proposed that quickly identifies improved reaction solvents by combining quantum mechanical computations of the reaction rate constant in a few solvents with a computer-aided molecular design (CAMD) procedure. The approach allows the identification of a high-performance solvent within a very large set of possible molecules. The validity of our CAMD approach is demonstrated through application to a classical nucleophilic substitution reaction for the study of solvent effects, the Menschutkin reaction. The results were validated successfully by in situ kinetic experiments. A space of 1,341 solvents was explored in silico, but required quantum-mechanical calculations of the rate constant in only nine solvents, and uncovered a solvent that increases the rate constant by 40%.


Assuntos
Desenho Assistido por Computador , Solventes/química , Simulação por Computador , Cinética , Modelos Químicos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...