Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38452244

RESUMO

Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Vida Independente , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo , Metabolômica , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
3.
mBio ; 14(5): e0141123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728370

RESUMO

IMPORTANCE: Penicillin-binding proteins (PBPs) are essential for proper bacterial cell division and morphogenesis. The genome of Streptococcus pneumoniae encodes for two class B PBPs (PBP2x and 2b), which are required for the assembly of the peptidoglycan framework and three class A PBPs (PBP1a, 1b and 2a), which remodel the peptidoglycan mesh during cell division. Therefore, their activities should be finely regulated in space and time to generate the pneumococcal ovoid cell shape. To date, two proteins, CozE and MacP, are known to regulate the function of PBP1a and PBP2a, respectively. In this study, we describe a novel regulator (CopD) that acts on both PBP1a and PBP2b. These findings provide valuable information for understanding bacterial cell division. Furthermore, knowing that ß-lactam antibiotic resistance often arises from PBP mutations, the characterization of such a regulator represents a promising opportunity to develop new strategies to resensitize resistant strains.


Assuntos
Peptidil Transferases , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Lactamas/metabolismo , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Peptidil Transferases/genética , Peptidil Transferases/metabolismo
4.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497665

RESUMO

Dominant optic atrophy is an optic neuropathy with varying clinical symptoms and progression. A severe disorder is associated with certain OPA1 mutations and includes additional symptoms for >20% of patients. This underscores the consequences of OPA1 mutations in different cellular populations, not only retinal ganglionic cells. We assessed the effects of OPA1 loss of function on oxidative metabolism and antioxidant defences using an RNA-silencing strategy in a human epithelial cell line. We observed a decrease in the mitochondrial respiratory chain complexes, associated with a reduction in aconitase activity related to an increase in reactive oxygen species (ROS) production. In response, the NRF2 (also known as NFE2L2) transcription factor was translocated into the nucleus and upregulated SOD1 and GSTP1. This study highlights the effects of OPA1 deficiency on oxidative metabolism in replicative cells, as already shown in neurons. It underlines a translational process to use cycling cells to circumvent and describe oxidative metabolism. Moreover, it paves the way to predict the evolution of dominant optic atrophy using mathematical models that consider mitochondrial ROS production and their detoxifying pathways.


Assuntos
Atrofia Óptica Autossômica Dominante , Humanos , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Respiração Celular , Estresse Oxidativo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
5.
Aging Cell ; 22(8): e13872, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300327

RESUMO

Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.


Assuntos
Algoritmos , Nível de Saúde , Inquéritos Nutricionais , Aprendizado de Máquina
6.
Biomolecules ; 13(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238589

RESUMO

Bacteria must synthesize their cell wall and membrane during their cell cycle, with peptidoglycan being the primary component of the cell wall in most bacteria. Peptidoglycan is a three-dimensional polymer that enables bacteria to resist cytoplasmic osmotic pressure, maintain their cell shape and protect themselves from environmental threats. Numerous antibiotics that are currently used target enzymes involved in the synthesis of the cell wall, particularly peptidoglycan synthases. In this review, we highlight recent progress in our understanding of peptidoglycan synthesis, remodeling, repair, and regulation in two model bacteria: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. By summarizing the latest findings in this field, we hope to provide a comprehensive overview of peptidoglycan biology, which is critical for our understanding of bacterial adaptation and antibiotic resistance.


Assuntos
Bactérias , Peptidoglicano , Peptidoglicano/metabolismo , Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Divisão Celular , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
8.
J Biol Chem ; 298(10): 102436, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041628

RESUMO

In Bacillus subtilis, sporulation is a sequential and highly regulated process. Phosphorylation events by histidine kinases are key points in the phosphorelay that initiates sporulation, but serine/threonine protein kinases also play important auxiliary roles in this regulation. PrkA has been proposed to be a serine protein kinase expressed during the initiation of sporulation and involved in this differentiation process. Additionally, the role of PrkA in sporulation has been previously proposed to be mediated via the transition phase regulator ScoC, which in turn regulates the transcriptional factor σK and its regulon. However, the kinase activity of PrkA has not been clearly demonstrated, and neither its autophosphorylation nor phosphorylated substrates have been unambiguously established in B. subtilis. We demonstrated here that PrkA regulation of ScoC is likely indirect. Following bioinformatic homology searches, we revealed sequence similarities of PrkA with the ATPases associated with diverse cellular activities ATP-dependent Lon protease family. Here, we showed that PrkA is indeed able to hydrolyze α-casein, an exogenous substrate of Lon proteases, in an ATP-dependent manner. We also showed that this ATP-dependent protease activity is essential for PrkA function in sporulation since mutation in the Walker A motif leads to a sporulation defect. Furthermore, we found that PrkA protease activity is tightly regulated by phosphorylation events involving one of the Ser/Thr protein kinases of B. subtilis, PrkC. Taken together, our results clarify the key role of PrkA in the complex process of B. subtilis sporulation.


Assuntos
Proteases Dependentes de ATP , Bacillus subtilis , Proteínas de Bactérias , Esporos Bacterianos , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia
9.
PLoS Genet ; 18(7): e1010180, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816552

RESUMO

Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Cobre/metabolismo , Proteínas de Transporte de Cobre/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Metalochaperonas/genética , Metalochaperonas/metabolismo , Metionina/metabolismo , Oxirredução , Periplasma/metabolismo
10.
Res Microbiol ; 172(7-8): 103871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34500011

RESUMO

Protein phosphorylation is a post-translational modification that affects protein activity through the addition of a phosphate moiety by protein kinases or phosphotransferases. It occurs in all life forms. In addition to Hanks kinases found also in eukaryotes, bacteria encode membrane histidine kinases that, with their cognate response regulator, constitute two-component systems and phosphotransferases that phosphorylate proteins involved in sugar utilization on histidine and cysteine residues. In addition, they encode BY-kinases and arginine kinases that phosphorylate protein specifically on tyrosine and arginine residues respectively. They also possess unusual bacterial protein kinases illustrated here by examples from Bacillus subtilis.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Aminoácidos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Repressão Catabólica , Histidina Quinase/química , Histidina Quinase/metabolismo , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Esporos Bacterianos/fisiologia
11.
Mol Microbiol ; 116(4): 1099-1112, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411374

RESUMO

Penicillin-binding proteins (PBPs) are crucial enzymes of peptidoglycan assembly and targets of ß-lactam antibiotics. However, little is known about their regulation. Recently, membrane proteins were shown to regulate the bifunctional transpeptidases/glycosyltransferases aPBPs in some bacteria. However, up to now, regulators of monofunctional transpeptidases bPBPs have yet to be revealed. Here, we propose that TseB could be such a PBP regulator. This membrane protein was previously found to suppress tetracycline sensitivity of a Bacillus subtilis strain deleted for ezrA, a gene encoding a regulator of septation ring formation. In this study, we show that TseB is required for B. subtilis normal cell shape, tseB mutant cells being shorter and wider than wild-type cells. We observed that TseB interacts with PBP2A, a monofunctional transpeptidase. While TseB is not required for PBP2A activity, stability, and localization, we show that the overproduction of PBP2A is deleterious in the absence of TseB. In addition, we showed that TseB is necessary not only for efficient cell wall elongation during exponential phase but also during spore outgrowth, as it was also observed for PBP2A. Altogether, our results suggest that TseB is a new member of the elongasome that regulates PBP2A function during cell elongation and spore germination.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Bacillus subtilis/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Farmacorresistência Bacteriana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação
12.
Front Microbiol ; 12: 697930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248920

RESUMO

To survive and adapt to changing nutritional conditions, bacteria must rapidly modulate cell cycle processes, such as doubling time or cell size. Recent data have revealed that cellular metabolism is a central regulator of bacterial cell cycle. Indeed, proteins that can sense precursors or metabolites or enzymes, in addition to their enzymatic activities involved in metabolism, were shown to directly control cell cycle processes in response to changes in nutrient levels. Here we focus on cell elongation and cell division in the Gram-positive rod-shaped bacterium Bacillus subtilis and we report evidences linking these two cellular processes to environmental nutritional availability and thus metabolic cellular status.

13.
Front Physiol ; 12: 689747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276410

RESUMO

Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.

14.
J Biol Chem ; 296: 100137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268383

RESUMO

Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical ß3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.


Assuntos
Adipócitos Bege/metabolismo , Regulação da Expressão Gênica , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Adipócitos Bege/citologia , Animais , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/genética , Transdução de Sinais , Simportadores/genética , Termogênese
15.
Nat Commun ; 11(1): 6312, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298927

RESUMO

The increase in speed of the high-speed atomic force microscopy (HS-AFM) compared to that of the conventional AFM made possible the first-ever visualisation at the molecular-level of the activity of an antimicrobial peptide on a membrane. We investigated the medically prescribed but poorly understood lipopeptide Daptomycin under infection-like conditions (37 °C, bacterial lipid composition and antibiotic concentrations). We confirmed so far hypothetical models: Dap oligomerization and the existence of half pores. Moreover, we detected unknown molecular mechanisms: new mechanisms to form toroidal pores or to resist Dap action, and to unprecedently quantify the energy profile of interacting oligomers. Finally, the biological and medical relevance of the findings was ensured by a multi-scale multi-nativeness-from the molecule to the cell-correlation of molecular-level information from living bacteria (Bacillus subtilis strains) to liquid-suspended vesicles and supported-membranes using electron and optical microscopies and the lipid tension probe FliptR, where we found that the cells with a healthier state of their cell wall show smaller membrane deformations.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Daptomicina/farmacologia , Microscopia de Força Atômica , Antibacterianos/uso terapêutico , Bacillus subtilis/citologia , Bacillus subtilis/ultraestrutura , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/ultraestrutura , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana , Humanos , Bicamadas Lipídicas , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Modelos Biológicos
16.
Sci Rep ; 10(1): 15938, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994436

RESUMO

In bacteria, glucosamine-6-phosphate (GlcN6P) synthase, GlmS, is an enzyme required for the synthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a precursor of peptidoglycan. In Bacillus subtilis, an UDP-GlcNAc binding protein, GlmR (formerly YvcK), essential for growth on non-glycolytic carbon sources, has been proposed to stimulate GlmS activity; this activation could be antagonized by UDP-GlcNAc. Using purified proteins, we demonstrate that GlmR directly stimulates GlmS activity and the presence of UDP-GlcNAc (at concentrations above 0.1 mM) prevents this regulation. We also showed that YvcJ, whose gene is associated with yvcK (glmR), interacts with GlmR in an UDP-GlcNAc dependent manner. Strains producing GlmR variants unable to interact with YvcJ show decreased transformation efficiency similar to that of a yvcJ null mutant. We therefore propose that, depending on the intracellular concentration of UDP-GlcNAc, GlmR interacts with either YvcJ or GlmS. When UDP-GlcNAc concentration is high, this UDP-sugar binds to YvcJ and to GlmR, blocking the stimulation of GlmS activity and driving the interaction between GlmR and YvcJ to probably regulate the cellular role of the latter. When the UDP-GlcNAc level is low, GlmR does not interact with YvcJ and thus does not regulate its cellular role but interacts with GlmS to stimulate its activity.


Assuntos
Bacillus subtilis/metabolismo , Uridina Difosfato N-Acetilglicosamina/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Peptidoglicano/metabolismo , Difosfato de Uridina/metabolismo , Uridina Difosfato N-Acetilglicosamina/fisiologia
17.
EMBO J ; 39(10): e102935, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31930742

RESUMO

Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Bacillus subtilis/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos
18.
J Physiol Biochem ; 76(2): 241-250, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31898016

RESUMO

Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácido Láctico/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Marrom/citologia , Animais , Metabolismo Energético , Humanos , Oxirredução , Estresse Oxidativo , Termogênese
19.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31019067

RESUMO

It is now well established that the intrauterine environment is of major importance for offspring health during later life. Endurance training during pregnancy is associated with positive metabolic adjustments and beneficial effects on the balance between pro-oxidants and antioxidants (redox state) in the offspring. Our hypothesis was that these changes could rely on mitochondrial adaptations in the offspring due to modifications of the fetal environment induced by maternal endurance training. Therefore, we compared the liver and skeletal muscle mitochondrial function and the redox status of young rats whose mothers underwent moderate endurance training (treadmill running) before and during gestation (T) with those of young rats from untrained mothers (C). Our results show a significant reduction in the spontaneous H2O2 release by liver and muscle mitochondria in the T versus C offspring (P<0.05). These changes were accompanied by alterations in oxygen consumption. Moreover, the percentage of short-chain fatty acids increased significantly in liver mitochondria from T offspring. This may lead to improvements in the fluidity and the flexibility of the membrane. In plasma, glutathione peroxidase activity and protein oxidation were significantly higher in T offspring than in C offspring (P<0.05). Such changes in plasma could represent an adaptive signal transmitted from mothers to their offspring. We thus demonstrated for the first time, to our knowledge, that it is possible to act on bioenergetic function including alterations of mitochondrial function in offspring by modifying maternal physical activity before and during pregnancy. These changes could be crucial for the future health of the offspring.


Assuntos
Fígado/metabolismo , Mitocôndrias/metabolismo , Mães , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Feminino , Membro Posterior/fisiologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Gravidez , Ratos , Ratos Wistar
20.
Mol Metab ; 20: 166-177, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553770

RESUMO

OBJECTIVE: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.


Assuntos
Glicemia/metabolismo , Dinaminas/metabolismo , Hipotálamo/metabolismo , Mitocôndrias/metabolismo , Células Receptoras Sensoriais/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Artérias Carótidas/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas Quinases/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...