Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 38(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507183

RESUMO

Autophagy maintains metabolism in response to starvation, but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1), while glucose deficiency promotes AMP-activated protein kinase (AMPK). The MTORC1 and AMPK signaling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and sequestosome 1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine, and arginine levels together. In contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser555, and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid but not of glucose activated lysosomal acidification, which occurred independently of autophagy and ULK1. In addition to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Aminoácidos/metabolismo , Animais , Autofagossomos/enzimologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Glucose/deficiência , Glucose/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Lisossomos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Inanição/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Cell Death Dis ; 8(8): e3014, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837152

RESUMO

There has been long-standing interest in targeting pro-survival autophagy as a combinational cancer therapeutic strategy. Clinical trials are in progress testing chloroquine (CQ) or its derivatives in combination with chemo- or radiotherapy for solid and haematological cancers. Although CQ has shown efficacy in preclinical models, its mechanism of action remains equivocal. Here, we tested how effectively CQ sensitises metastatic breast cancer cells to further stress conditions such as ionising irradiation, doxorubicin, PI3K-Akt inhibition and serum withdrawal. Contrary to the conventional model, the cytotoxic effects of CQ were found to be autophagy-independent, as genetic targeting of ATG7 or the ULK1/2 complex could not sensitise cells, like CQ, to serum depletion. Interestingly, although CQ combined with serum starvation was robustly cytotoxic, further glucose starvation under these conditions led to a full rescue of cell viability. Inhibition of hexokinase using 2-deoxyglucose (2DG) similarly led to CQ resistance. As this form of cell death did not resemble classical caspase-dependent apoptosis, we hypothesised that CQ-mediated cytotoxicity was primarily via a lysosome-dependent mechanism. Indeed, CQ treatment led to marked lysosomal swelling and recruitment of Galectin3 to sites of membrane damage. Strikingly, glucose starvation or 2DG prevented CQ from inducing lysosomal damage and subsequent cell death. Importantly, we found that the related compound, amodiaquine, was more potent than CQ for cell killing and not susceptible to interference from glucose starvation. Taken together, our data indicate that CQ effectively targets the lysosome to sensitise towards cell death but is prone to a glucose-dependent resistance mechanism, thus providing rationale for the related compound amodiaquine (currently used in humans) as a better therapeutic option for cancer.


Assuntos
Cloroquina/farmacologia , Glucose/metabolismo , Lisossomos/metabolismo , Autofagia , Linhagem Celular Tumoral , Humanos
3.
Cells ; 5(2)2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187479

RESUMO

Autophagy plays a critical role in cell metabolism by degrading and recycling internal components when challenged with limited nutrients. This fundamental and conserved mechanism is based on a membrane trafficking pathway in which nascent autophagosomes engulf cytoplasmic cargo to form vesicles that transport their content to the lysosome for degradation. Based on this simple scheme, autophagy modulates cellular metabolism and cytoplasmic quality control to influence an unexpectedly wide range of normal mammalian physiology and pathophysiology. In this review, we summarise recent advancements in three broad areas of autophagy regulation. We discuss current models on how autophagosomes are initiated from endogenous membranes. We detail how the uncoordinated 51-like kinase (ULK) complex becomes activated downstream of mechanistic target of rapamycin complex 1 (MTORC1). Finally, we summarise the upstream signalling mechanisms that can sense amino acid availability leading to activation of MTORC1.

4.
PLoS One ; 9(6): e93387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963708

RESUMO

Genetic structure can be a consequence of recent population fragmentation and isolation, or a remnant of historical localised adaptation. This poses a challenge for conservationists since misinterpreting patterns of genetic structure may lead to inappropriate management. Of 17 species of reptile originally found in Mauritius, only five survive on the main island. One of these, Phelsuma guimbeaui (lowland forest day gecko), is now restricted to 30 small isolated subpopulations following severe forest fragmentation and isolation due to human colonisation. We used 20 microsatellites in ten subpopulations and two mitochondrial DNA (mtDNA) markers in 13 subpopulations to: (i) assess genetic diversity, population structure and genetic differentiation of subpopulations; (ii) estimate effective population sizes and migration rates of subpopulations; and (iii) examine the phylogenetic relationships of haplotypes found in different subpopulations. Microsatellite data revealed significant population structure with high levels of genetic diversity and isolation by distance, substantial genetic differentiation and no migration between most subpopulations. MtDNA, however, showed no evidence of population structure, indicating that there was once a genetically panmictic population. Effective population sizes of ten subpopulations, based on microsatellite markers, were small, ranging from 44 to 167. Simulations suggested that the chance of survival and allelic diversity of some subpopulations will decrease dramatically over the next 50 years if no migration occurs. Our DNA-based evidence reveals an urgent need for a management plan for the conservation of P. guimbeaui. We identified 18 threatened and 12 viable subpopulations and discuss a range of management options that include translocation of threatened subpopulations to retain maximum allelic diversity, and habitat restoration and assisted migration to decrease genetic erosion and inbreeding for the viable subpopulations.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Lagartos/genética , Migração Animal , Animais , DNA Mitocondrial/química , Espécies em Perigo de Extinção , Extinção Biológica , Genótipo , Lagartos/fisiologia , Maurício , Repetições de Microssatélites , Filogenia , Densidade Demográfica , Dinâmica Populacional , Isolamento Reprodutivo
5.
PLoS One ; 9(4): e88798, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24785293

RESUMO

The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp.) that have survived on mainland Mauritius. We had two main aims: (i) to predict the spatial distribution and overlap of P. grandis and the endemic geckos at a landscape level; and (ii) to investigate the effects of P. grandis on the abundance and risks of extinction of the endemic geckos at a local scale. An ensemble forecasting approach was used to predict the spatial distribution and overlap of P. grandis and the endemic geckos. We used hierarchical binomial mixture models and repeated visual estimate surveys to calculate the abundance of the endemic geckos in sites with and without P. grandis. The predicted range of each species varied from 85 km2 to 376 km2. Sixty percent of the predicted range of P. grandis overlapped with the combined predicted ranges of the four endemic geckos; 15% of the combined predicted ranges of the four endemic geckos overlapped with P. grandis. Levin's niche breadth varied from 0.140 to 0.652 between P. grandis and the four endemic geckos. The abundance of endemic geckos was 89% lower in sites with P. grandis compared to sites without P. grandis, and the endemic geckos had been extirpated at four of ten sites we surveyed with P. grandis. Species Distribution Modelling, together with the breadth metrics, predicted that P. grandis can partly share the equivalent niche with endemic species and survive in a range of environmental conditions. We provide strong evidence that smaller endemic geckos are unlikely to survive in sympatry with P. grandis. This is a cause of concern in both Mauritius and other countries with endemic species of Phelsuma.


Assuntos
Ecologia , Espécies Introduzidas , Lagartos , Animais , Modelos Teóricos , Especificidade da Espécie
6.
Essays Biochem ; 55: 1-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24070467

RESUMO

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1-ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1-ULK1 signalling module.


Assuntos
Autofagia , Transdução de Sinais , Animais , Homeostase , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...