Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37297052

RESUMO

This study examined how pH hydrolysis affects the recovery process for antimony extracted from spent electrolytes. Various OH- reagents were used to adjust the pH levels. The findings reveal that pH plays a crucial role in determining the optimal conditions for extracting antimony. The results show that NH4OH and NaOH are more effective compared to water, with optimal conditions at pH 0.5 for water and pH 1 for NH4OH and NaOH, resulting in average antimony extraction yields of 90.4%, 96.1%, and 96.7%, respectively. Furthermore, this approach helps to improve both crystallography and purity related to recovered antimony samples obtained through recycling processes. The solid precipitates obtained lack a crystalline structure, making it difficult to identify the compounds formed, but element concentrations suggest the presence of oxychloride or oxide compounds. Arsenic is incorporated into all solids, affecting the purity of the product, and water showing higher antimony content (68.38%) and lower arsenic values (8%) compared to NaOH and NH4OH. Bismuth integration into solids is less than arsenic (less than 2%) and remains unaffected by pH levels except in tests with water, where a bismuth hydrolysis product is identified at pH 1, accounting for the observed reduction in antimony extraction yields.

2.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832379

RESUMO

Fire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top of the molten bath. This slag is periodically removed, which implies liquid metal flowing through the furnace port. To address its malfunction, a re-design of the furnace port is presented in this work. Due to the lack of previous technical information, the convective heat transfer coefficient between the slag and the furnace port was characterized through a combination of an experimental test and a three-dimensional transient model. Finally, the original design of the furnace port was analyzed and modifications were proposed, resulting in a reduction of the average temperature of the critical areas up to 300 K. This improvement prevents the anchoring of the accretion layer over the port plates and the steel plate from being attacked by the copper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...