Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177398

RESUMO

Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric nanogenerator based on dehydrated nopal powder (NOP-TENG) as novel triboelectric material. In addition, this nanogenerator uses a polyimide film tape adhered to two copper-coated Bakelite plates. The NOP-TENG generates a power density of 2309.98 µW·m-2 with a load resistance of 76.89 MΩ by applying a hand force on its outer surface. Furthermore, the nanogenerator shows a power density of 556.72 µW·m-2 with a load resistance of 76.89 MΩ and under 4g acceleration at 15 Hz. The output voltage of the NOP-TENG depicts a stable output performance even after 27,000 operation cycles. This nanogenerator can light eighteen green commercial LEDs and power a digital calculator. The proposed NOP-TENG has a simple structure, easy manufacturing process, stable electric behavior, and cost-effective output performance. This portable nanogenerator may power electronic devices using different vibration energy sources.

2.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200636

RESUMO

The smart healthcare devices connected with the internet of things (IoT) for medical services can obtain physiological data of risk patients and communicate these data in real-time to doctors and hospitals. These devices require power sources with a sufficient lifetime to supply them energy, limiting the conventional electrochemical batteries. Additionally, these batteries may contain toxic materials that damage the health of patients and environment. An alternative solution to gradually substitute these electrochemical batteries is the development of triboelectric energy harvesters (TEHs), which can convert the kinetic energy of ambient into electrical energy. Here, we present the fabrication of a TEH formed by a stainless steel substrate (25 mm × 15 mm) coated with a molybdenum disulfide (MoS2) film as top element and a polydimethylsiloxane (PDMS) film deposited on indium tin oxide coated polyethylene terephthalate substrate (PET/ITO). This TEH has a generated maximum voltage of 2.3 V and maximum output power of 112.55 µW using a load resistance of 47 kΩ and a mechanical vibration to 59.7 Hz. The proposed TEH could be used to power potential smart healthcare devices.

3.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256037

RESUMO

Industry 4.0 and the Internet of Things have significantly increased the use of sensors and electronic products based on flexible substrates, which require electrical energy for their performance. This electrical energy can be supplied by piezoelectric vibrational energy harvesting (pVEH) devices. These devices can convert energy from ambient mechanical excitations into electrical energy. In order to develop, these devices require piezoelectric films fabricated with a simple and low-cost process. In this work, we synthesize ZnO nanorod film by a solvothermal method and deposit by spraying on ITO (indium-tin-oxide)/PET (polyethylene terephthalate) flexible substrate for a pVEH microdevice. The results of the characterization of the ZnO nanorod film using X-ray diffraction (XRD) confirm the typical reflections for this type of nanomaterial (JCPDS 36-145). Based on transmission electron microscopy (TEM) images, the size of the nanorod film is close to 1380 nm, and the average diameter is 221 ± 67 nm. In addition, the morphological characteristics of the ZnO nanorod film are obtained using atomic force microscopy (AFM) tapping images. The pVEH microdevice has a resonant frequency of 37 Hz, a generated voltage and electrical power of 9.12 V and 6.67 µW, respectively, considering a load resistance of 107.7 kΩ and acceleration of 1.5 g. The ZnO nanorod film may be applied to pVEH microdevices with flexible substrates using a low-cost and easy fabrication process.

4.
Carbohydr Polym ; 237: 116103, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241423

RESUMO

In this study, the chemical, mechanical and barrier properties of films made from plasma-modified corn starch (MSF) were evaluated as a function of the amylose content (30, 50 and 70 %). SEM analysis revealed the presence of remnant starch granules (RSG) in all films, which promoted the ordering of helices as suggested by the FTIR results. Moreover, XPS analysis was used to identify the oxidation mechanism in all MSF as the atomic proportion of hydroxyl, carbonyl and carboxyl groups changed. Also, the increase of C-C proportions suggested crosslinking in MSF70. TGA analysis indicated low interaction between starch and the plasticizer as the tensile strength and elongation at break diminished in MSF50 and MSF70 due to the low plasticizing effect of glycerol, the oxidation phenomena and the depolymerization of starch chains. However, the crosslinking of MSF70 showed characteristics of rigid films with good hydrophobic performance.

5.
Int J Biol Macromol ; 144: 682-689, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857158

RESUMO

In the present study, the effect of plasma treatment on the structural properties of three granular corn starches (normal, Hylon V and Hylon VII) was investigated. Thermal (TGA/DSC), structural (XRD/FTIR) and chemical (XPS) properties were evaluated. Plasma treatment resulted in partial evaporation of water molecules changing the organization level of the double helices in the crystalline lamellae. Moreover, XRD results suggested a decrease of the long-range crystallinity and suggested changes in amylose chains after treatments. The crosslinking of modified amylose chains measured by XPS analysis resulted in variations in the gelatinization parameters as well as in its heterogeneous crystalline structure. The results indicate that the type and extent of changes in the structure of plasma-treated corn starch depends on the distribution of the water molecules inside the crystalline regions (helical water) and on the amylose content. In addition, the obtained results indicated that plasma treatment is a suitable method to modify starch without any incorporation of new elements from hexamethyldisiloxane (HMDSO), which only promotes stronger interactions between the starch main components.


Assuntos
Gases em Plasma/química , Siloxanas/química , Amido/química , Zea mays/química , Amilose/química , Reagentes de Ligações Cruzadas/química , Cristalização , Gelatina/química , Conformação Molecular , Propriedades de Superfície , Água
6.
Methods Enzymol ; 627: 321-337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31630746

RESUMO

Conjugated polymers are attractive for many applications due to their unique properties. Their molecular structure can easily be tuned, making them suitable for an enormous number of specific applications. Conjugated polymers have the potential to achieve electrical properties similar to those of noncrystalline inorganic semiconductors; however, their chemical structure is much more complex and somewhat resembles that of biomacromolecules. The molecular conformation and interactions of conjugated polymers play an important role in their functionality. The use of enzymes has emerged as a highly valuable alternative method to synthesize these polymers and is very useful in the fabrication of their nanostructures. Here, we present established strategies for the synthesis of conjugated polymers in template-free systems that do not interfere with the preparation of their nanostructures. These strategies are based on the use of peroxidases (class III; EC 1.11.1.7, donor: hydrogen peroxide oxidoreductase), which are enzymes that have the ability to catalyze the oxidation of a number of compounds (including aromatics such as aniline, pyrrole, thiophene and some of their derivatives), in the presence of hydrogen peroxide, to obtain conjugated polymers.


Assuntos
Radicais Livres/química , Peroxidase do Rábano Silvestre/metabolismo , Nanoestruturas/química , Polimerização , Compostos de Anilina/química , Biocatálise , Radicais Livres/metabolismo , Peróxido de Hidrogênio/metabolismo , Pirróis/química , Tiofenos/química
7.
Int J Biol Macromol ; 135: 196-202, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121235

RESUMO

In this study, surface, chemical, physicochemical and barrier properties of films treated with hexamethyldisiloxane (HMDSO) cold plasma were investigated. Normal and high amylose starches were gelatinized at different level to obtain films with different amount of free amylopectin. The obtained films were subjected to HMDSO plasma treatment. XPS analysis indicated chemical changes including substitution and crosslinking of the starch molecule, as reflected by the CSi bond increasing and the C-OH bonds reduction on treated films. These changes modified the thermal transitions (Tm and ΔH). The highest amount of CSi bonds was more noticeable in the TF50 film, suggesting a better interaction between active species of plasma and the free amylopectin released into the continuous phase of the film. Moreover, active species of plasma increased the crystallinity in all films. These results suggested that a higher helical packaging, crosslinking and hydrophobic blocking groups (CSi) of starch molecules resulted in films with improved barrier performance against water molecules.


Assuntos
Gelatina/química , Gases em Plasma/química , Amido/química , Vapor , Amilopectina/química , Varredura Diferencial de Calorimetria , Gelatina/ultraestrutura , Microscopia de Força Atômica , Permeabilidade , Análise Espectral
8.
RSC Adv ; 9(12): 6965-6972, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518470

RESUMO

Hollow ZnO microspheres were successfully synthesized by a hydrothermal method and then functionalized with graphene oxide (GO) flakes, previously obtained through electrochemical oxidation. Their photocatalytic activity toward the photodegradation of salicylic acid under UV light irradiation was evaluated by UV-Vis spectroscopy. Unfunctionalized microspheres and ZnO functionalized with chemically oxidized graphene were also studied as comparative terms. The hybrid materials of ZnO with both electrochemical and chemical GO gave a similar photodegradation yield of ∼28% against 18% of the non-functionalized microspheres. The similar degradation yields and rate constants obtained with the two GO synthetic methods indicate that electrochemical oxidation of GO represents an eco-friendly option over traditional methods for photocatalytic degradation systems.

9.
J Colloid Interface Sci ; 456: 182-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26122799

RESUMO

The incorporation of gold nanoparticles in heterojunction solar cells is expected to increase the efficiency due to plasmon effects, but the literature studies are sometimes controversial. In this work, gold nanoparticles passivated with (Ph)n-(CH2)3SH (n=1, 2, 3) have been synthesized by reduction of tetrachloroauric acid with sodium borohydride in two ways: (1) one-phase where both the thiol and the gold salt are solubilized in a mixture of methanol with acetic acid: Au-s-(Ph)n or (2), two-phase, using tetraoctylammonium bromide (TOAB) to transfer gold from water to toluene where the thiol is solubilized, Au(TOAB)-s-(Ph)n. The morphological, experimental and simulated optical properties were studied and analyzed as a function of the thiol and of the synthetic procedure in order to correlate them with the efficiency of plasmonic hybrid solar cells in the following configuration ITO/PEDOT:PSS/P3HT:PCBM-C60:Au-nanoparticles/Field's metal, where PEDOT: PSS is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), P3HT is poly(3-hexylthiophene-2,5-diyl) and PCBM-C60 is [6,6]-Phenyl C61 butyric acid methyl ester. Our findings indicate that the gold nanoparticles incorporation is affecting the electrical properties of the active layer giving a maximum efficiency for Au-s-(Ph)3. Moreover, TOAB, which is usually used in the synthesis of thiol passivated gold nanoparticles, has negative effects in both plasmonic and electrical properties. This result is important for optoelectronic applications of gold nanoparticles prepared with any procedures that involve TOAB.

10.
Langmuir ; 31(24): 6909-16, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26023823

RESUMO

The supramolecular order of a 2,5-bis(dodecanoxy)phenyleneethynylene-butadiyne series of rod-like oligomers with 2, 4, 6, and 8 phenyleneethynylene moieties was studied in the solid state by differential scanning calorimetry (DSC), temperature-dependent small- and wide-angle X-ray scattering (SWAXS), selected area electron diffraction (SAED), polarized optical microscopy (POM), high-resolution transmission microscopy (HRTEM), and scanning tunneling microscopy (STM). It was found that all of the oligomers self-assemble in blocks of molecules that resemble bricks that are randomly oriented. These oligomers are described as sanidic liquid crystals as a term to classify their mesomorphic behavior because of their brick or board-like structure. The strong π-π interaction that governs the package of conjugated backbones was evidenced by the reiterative distances of 0.36 ± 0.017 nm found by SWAXS and 0.32 ± 0.017 nm found by HRTEM. A STM study of a cast film of the tetramer deposited on highly oriented pyrolitic graphite (HOPG) allowed for the visualization and determination of the conjugated backbone length of 2.48 nm and a phenyl-phenyl distance of 0.34 nm, suggesting that the molecules are stacked in lamellae perpendicularly aligned to the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...