Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cerebellum ; 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36502502

RESUMO

The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.

2.
Sci Rep ; 12(1): 5735, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388106

RESUMO

We often fail to recall another person's name. Proper names might be more difficult to memorize and retrieve than other pieces of knowledge, such as one's profession because they are processed differently in the brain. Neuroimaging and neuropsychological studies associate the bilateral anterior temporal lobes (ATL) in the retrieval of proper names and other person-related knowledge. Specifically, recalling a person's name is thought to be supported by the left ATL, whereas recalling specific information such as a person's occupation is suggested to be subserved by the right ATL. To clarify and further explore the causal relationship between both ATLs and proper name retrieval, we stimulated these regions with anodal, cathodal and sham transcranial direct current stimulation (tDCS) while the participants memorized surnames (e.g., Mr. Baker) and professions (e.g., baker) presented with a person's face. The participants were then later asked to recall the surname and the profession. Left ATL anodal stimulation resulted in higher intrusion errors for surnames than sham, whereas right ATL anodal stimulation resulted in higher overall intrusion errors, both, surnames and professions, compared to cathodal stimulation. Cathodal stimulation of the left and right ATL had no significant effect on surname and profession recall. The results indicate that the left ATL plays a role in recalling proper names. On the other hand, the specific role of the right ATL remaines to be explored.


Assuntos
Nomes , Estimulação Transcraniana por Corrente Contínua , Face , Humanos , Rememoração Mental/fisiologia , Lobo Temporal/fisiologia
3.
Front Physiol ; 11: 905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848855

RESUMO

It is often suggested that stretching-related changes in performance can be partially attributed to stretching-induced neural alterations. Recent evidence though shows that neither spinal nor cortico-spinal excitability are susceptible of a long-lasting effect and only the amplitude of stretch or tap reflex (TR) is reduced up to several minutes. Since afferents from muscle spindles contribute to voluntary muscle contractions, muscle stretching could be detrimental to muscle performance. However, the inhibition of muscle spindle sensitivity should be reversed as soon as the stretched muscle contracts again, due to α-γ co-activation. The present work evaluated which type of muscle contraction (static or dynamic) promotes the best recovery from the inhibition in spindle sensitivity following static stretching. Fifteen students were tested for TR at baseline and after 30 s maximal individual static stretching of the ankle plantar flexors followed by one of three randomized interventions (isometric plantar flexor MVC, three counter movement jumps, and no contraction/control). Ten TRs before and 20 after the procedures were induced with intervals of 30 s up to 10 min after static stretching. The size of the evoked TRs (peak to peak amplitude of the EMG signal) following stretching without a subsequent contraction (control) was on average reduced by 20% throughout the 10 min following the intervention and did not show a recovery trend. Significant decrease in relation to baseline were observed at 9 of the 20 time points measured. After MVC of plantar flexors, TR recovered immediately showing no differences with baseline at none of the investigated time points. Following three counter movement jumps it was observed a significant 34.4% group average inhibition (p < 0.0001) at the first time point. This effect persisted for most of the participants for the next measurement (60 s after intervention) with an average reduction of 23.4% (p = 0.008). At the third measurement, 90 s after the procedure, the reflexes were on average still 21.4% smaller than baseline, although significant level was not reached (p = 0.053). From 120 s following the intervention, the reflex was fully recovered. This study suggests that not every type of muscle contraction promotes a prompt recovery of a stretch-induced inhibition of muscle spindle sensitivity.

4.
Front Hum Neurosci ; 14: 271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765240

RESUMO

The triple-code model (TCM) of number processing suggests the involvement of distinct parietal cortex areas in arithmetic operations: the bilateral horizontal segment of the intraparietal sulcus (hIPS) for arithmetic operations that require the manipulation of numerical quantities (e.g., subtraction) and the left angular gyrus (AG) for arithmetic operations that require the retrieval of answers from long-term memory (e.g., multiplication). Although neuropsychological, neuroimaging, and brain stimulation studies suggest the dissociation of these operations into distinct parietal cortex areas, the role of strategy (online calculation vs. retrieval) is not yet fully established. In the present study, we further explored the causal involvement of the left AG for multiplication and left hIPS for subtraction using a neuronavigated repetitive transcranial magnetic stimulation (rTMS) paradigm. Stimulation sites were determined based on an fMRI experiment using the same tasks. To account for the effect of strategy, participants were asked whether they used retrieval or calculation for each individual problem. We predicted that the stimulation of the left AG would selectively disrupt the retrieval of the solution to multiplication problems. On the other hand, stimulation of the left hIPS should selectively disrupt subtraction. Our results revealed that left AG stimulation was detrimental to the retrieval and online calculation of solutions for multiplication problems, as well as, the retrieval (but not online calculation) of the solutions to subtraction problems. In contrast, left hIPS stimulation had no detrimental effect on both operations regardless of strategy.

5.
Front Aging Neurosci ; 12: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116653

RESUMO

Transcranial alternating current stimulation (tACS) is the application of subthreshold, sinusoidal current to modulate ongoing brain rhythms related to sensory, motor and cognitive processes. Electrophysiological studies suggested that the effect of tACS applied at an alpha frequency (8-12 Hz) was state-dependent. The effects of tACS, that is, an increase in parieto-occipital electroencephalography (EEG) alpha power and magnetoencephalography (MEG) phase coherence, was only observed when the eyes were open (low alpha power) and not when the eyes were closed (high alpha power). This state-dependency of the effects of alpha tACS might extend to the aging brain characterized by general slowing and decrease in spectral power of the alpha rhythm. We additionally hypothesized that tACS will influence the motor cortex, which is involved in motor skill learning and consolidation. A group of young and old healthy adults performed a serial reaction time task (SRTT) with their right hand before and after the tACS stimulation. Each participant underwent three sessions of stimulation: sham, stimulation applied at the individual participant's alpha peak frequency or individual alpha peak frequency (iAPF; α-tACS) and stimulation with iAPF plus 2 Hz (α2-tACS) to the left motor cortex for 10 min (1.5 mA). We measured the effect of stimulation on general motor skill (GMS) and sequence-specific skill (SS) consolidation. We found that α-tACS and α2-tACS improved GMS and SS consolidation in the old group. In contrast, α-tACS minimally improved GMS consolidation but impaired SS consolidation in the young group. On the other hand, α2-tACS was detrimental to the consolidation of both skills in the young group. Our results suggest that individuals with aberrant alpha rhythm such as the elderly could benefit more from tACS stimulation, whereas for young healthy individuals with intact alpha rhythm the stimulation could be detrimental.

6.
J Musculoskelet Neuronal Interact ; 19(1): 30-37, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839301

RESUMO

OBJECTIVES: Corticospinal tract excitability and spinal reflex pathways are transiently affected by short applications of static stretching. However, it remains unclear whether the duration and magnitude of these neurophysiological responses can be increased with a longer duration of the applied stretch. The purpose of this study was to investigate alterations in cortical and spinal excitability following five minutes static stretching. METHODS: Seventeen participants (22.8±2.3 years old) were tested for the tendon tap reflex (T-reflex), Hoffman reflex (H-reflex) and motor-evoked potentials (MEPs) after transcranial magnetic stimulation (TMS) of the ankle flexor muscles in two separate occasions: before and after 5 minute static stretching or 5 minute control period, in a randomized order. RESULTS: No changes were observed following the control condition. H/M ratio increased by 16.2% after stretching (P=.036). Furthermore, immediately after stretching it was observed a strong inhibition of the T-reflex (57.6% inhibition, P=.003) that persisted up to five minutes after stretching (16.2% inhibition, P=.013) but returned to baseline following 10 minutes. MEPs were not affected by stretching. CONCLUSIONS: This study suggests that the neuromuscular responses that follow five minute of static stretching do not influence the excitability of the corticospinal tract and follow a different time course within spinal reflex pathways.


Assuntos
Potencial Evocado Motor/fisiologia , Reflexo H/fisiologia , Exercícios de Alongamento Muscular , Tratos Piramidais/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
7.
Neural Plast ; 2018: 3076986, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186317

RESUMO

Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.


Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Fases do Sono/fisiologia , Adulto , Humanos , Sono/fisiologia , Privação do Sono/fisiopatologia , Privação do Sono/psicologia
8.
Front Physiol ; 9: 935, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061844

RESUMO

During the period when the ankle joint is kept in a dorsiflexed position, the soleus (SOL) H-reflex is inhibited. The nature of this inhibition is not fully understood. One hypothesis is that the decrease in spinal excitability could be attributed to post-activation depression of muscle spindle afferents due to their higher firing rate during the stretch-and-hold procedure. As the static stretching position is maintained though, a partial restoration of the neurotransmitter is expected and should mirror a decrease in H-reflex inhibition. In the present study, we explored the time course of spinal excitability during a period of stretching. SOL H-reflex was elicited during a passive dorsiflexion movement, at 3, 6, 9, 12, 18, 21, and 25 s during maximal ankle dorsiflexion, during plantar flexion (PF) and after stretching, in 12 healthy young individuals. Measurements during passive dorsiflexion, PF and after stretching were all performed with the ankle at 100° angle; measurements during static stretching were performed at individual maximal dorsiflexion. H-reflex was strongly inhibited during the dorsiflexion movement and at maximal dorsiflexion (p < 0.0001) but recovered during PF and after stretching. During stretching H-reflex showed a recovery pattern (r = 0.836, P = 0.019) with two distinct recovery steps at 6 and 21 s into stretching. It is hypothesized that the H-reflex inhibition observed until 18 s into stretching is the result of post-activation depression of Ia afferent caused by the passive dorsiflexion movement needed to move the ankle into testing position. From 21 s into stretching, the lower inhibition could be caused by a weaker post-activation depression, inhibition from secondary afferents or post-synaptic inhibitions.

9.
Front Physiol ; 9: 530, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942261

RESUMO

Spinal excitability in humans is inhibited by both passively holding a static position with the muscle lengthened (static stretching) and by a single non-active lengthening movement. However, whilst immediately after a passive lengthening movement the inhibition persists for several seconds, there seem to be an immediate recovery following static stretching. This result is counter intuitive and could be attributed to methodological procedures. Indeed, differently to what has been done until now, in order to study whether static stretching has a transient effect on the neuromuscular pathway, the procedure should be repeated many times and measurements collected at different time points after stretching. In the present study we repeated 60 times 30 s static stretching of ankle plantar flexors and measured tap reflex (T-reflex), Hoffman reflex (H-reflex), and motor evoked potentials (MEPs) from the Soleus muscle at several time points, starting from immediately after until 30 s following the procedure. T-reflex was strongly inhibited (range 31-91%, p = 0.005) and the inhibition persisted for 30 s showing a slow recovery (r = 0.541, p = 0.037). H-reflex was not affected by the procedure. Stretching increased the size of the MEPs (p < 0.0001), differences at times 0 and 2 s after stretching (p = 0.015 and p = 0.047, respectively). These results confirm that static stretching reduces muscle spindle sensitivity. Moreover it is suggested that post-activation depression of Ia afferents, which is commonly considered the cause of H-reflex depression during both dorsiflexion and static stretching, vanished immediately following stretching or is counteracted by an increased corticospinal excitability.

10.
Exp Brain Res ; 236(10): 2573-2588, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29943239

RESUMO

Transcranial alternating current stimulation (tACS) can modulate brain oscillations, cortical excitability and behaviour. In aging, the decrease in EEG alpha activity (8-12 Hz) in the parieto-occipital and mu rhythm in the motor cortex are correlated with the decline in cognitive and motor functions, respectively. Increasing alpha activity using tACS might therefore improve cognitive and motor function in the elderly. The present study explored the influence of tACS on cortical excitability in young and old healthy adults. We applied tACS at individual alpha peak frequency for 10 min (1.5 mA) to the left motor cortex. Transcranial magnetic stimulation was used to assess the changes in cortical excitability as measured by motor-evoked potentials at rest, before and after stimulation. TACS increased cortical excitability in both groups. However, our results also suggest that the mechanism behind the effects was different, as we observed an increase and decrease in intracortical inhibition in the old group and young group, respectively. Our results indicate that both groups profited similarly from the stimulation. There was no indication that tACS was more effective in conditions of low alpha power, that is, in the elderly.


Assuntos
Envelhecimento/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Idoso , Biofísica , Eletroencefalografia , Eletromiografia , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/fisiologia , Método Simples-Cego , Fatores de Tempo , Estimulação Magnética Transcraniana , Adulto Jovem
11.
Clin Neurophysiol ; 129(7): 1397-1402, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729595

RESUMO

OBJECTIVES: Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. METHODS: Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. RESULTS: The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. CONCLUSIONS: The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. SIGNIFICANCE: The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology.


Assuntos
Potencial Evocado Motor/fisiologia , Campos Magnéticos , Imãs , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Estudos Cross-Over , Eletromiografia/métodos , Feminino , Humanos , Masculino , Método Simples-Cego , Estimulação Magnética Transcraniana/instrumentação
12.
Clin Neurophysiol ; 128(10): 1971-1977, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28829980

RESUMO

OBJECTIVE: There is increasing evidence that an involvement of central nervous system (CNS) can occur in several myopathies. Transcranial magnetic stimulation (TMS) may represent a valuable tool for investigating important neurophysiological and pathophysiological aspects of cortical involvement in neuromuscular disorders. In this review paper we aimed to perform a systematic search of the studies employing TMS techniques in subjects suffering from myopathies. METHODS: A literature search was conducted using PubMed and Embase. We identified and reviewed 9 articles matching the inclusion criteria. One hundred twenty patients were included in these studies, which have applied TMS in patients with muscle disorders. RESULTS: To date, a few studies using TMS have been performed in myopathic patients and detected subclinical abnormalities in cortical reactivity and plasticity. The most consistent finding was a decrease in intracortical inhibition, which likely represents a non-specific compensatory mechanism of the CNS in an attempt to overcome the muscle deficit through an increase of the motor cortex output to deficient muscles. CONCLUSIONS: Application of TMS to characterize the pathophysiology of the CNS in these subjects appears to be safe and may lead to the development of valuable biomarkers. Well-defined motor cortical excitability patterns can be identified in the different muscle diseases, even if preliminary findings should be confirmed in future studies in larger cohorts of patients. SIGNIFICANCE: TMS studies may shed new light on the physiological and pathophysiological mechanisms underlying the cortical involvement in muscle disorders.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiopatologia , Doenças Musculares/diagnóstico , Doenças Musculares/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Humanos
13.
Exp Physiol ; 102(8): 901-910, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28585766

RESUMO

NEW FINDINGS: What is the central question of this study? What mediates neural responses following static stretching, and how long do these influences last? What is the main finding and its importance? This study shows that 1 min of static stretching inhibits the tendon tap reflex and facilitates the H reflex without influencing motor-evoked potentials. The results indicate that at least two different mechanisms mediate neural responses after static stretching. The purpose of this study was to determine whether the neural responses observed after static stretching are mediated by sensitivity of muscle spindles, spinal excitability or cortical excitability and how long these influences last. Nineteen volunteers (25.7 ± 5.6 years old) were tested for the tendon tap reflex (T-reflex), H reflex and motor-evoked potentials on ankle flexors and extensors immediately, 5 and 10 min after 1 min static stretching applied at individual maximal ankle dorsiflexion, as well as immediately, 5 and 10 min after a control period of the same duration. Comparison of measurements collected immediately after stretching or control conditions revealed that the T-reflex was weaker after stretching than after control (-59.2% P = 0.000). The T-reflex showed a slow recovery rate within the first 150 s after stretching, but 5 min after the inhibition had disappeared. The H reflex increased immediately after stretching (+18.3%, P = 0.036), showed a quick tendency to recover and returned to control values within 5 min from stretching. Motor-evoked potentials were not affected by the procedure. These results suggest that 1 min of static stretching primarily decreases muscle spindle sensitivity and facilitates the H reflex, whereas effects on the motor cortex can be excluded.


Assuntos
Reflexo H/fisiologia , Córtex Motor/fisiologia , Reflexo de Estiramento/fisiologia , Adulto , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia
15.
Noise Health ; 18(83): 206-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27569408

RESUMO

To examine extraaural effects as induced by 20 min of road (ROAD) and 20 min of rail (RAIL) traffic noise with same loudness (75 dBA), a laboratory study was carried out. The study (N = 54) consisted of 28 high and 26 low-annoyed healthy individuals as determined by a traffic annoyance test. To control attention, all individuals performed a nonauditory short-term memory test during the noise exposures. A within-subject design, with phases of ROAD, RAIL, and CALM (memory test only), alternated by phases of rest, was defined. Heart rate (HR), systolic blood pressure (sBP), total peripheral resistance (TPR), as well as three autonomic variables, preejection period (PEP), 0.15-0.4 Hz high-frequency component of HR variability (HF), and salivary stress biomarker alpha amylase (sAA) were measured. In relation to CALM, HR increased (RAIL +2.1%, ROAD +2.5%), sBP tended to increase against the end of noise exposure, PEP decreased (RAIL -0.7%, ROAD -0.8%), HF decreased (RAIL -3.4%, ROAD -2.9%), and sAA increased (RAIL +78%, ROAD +69%). No differences were found between RAIL and ROAD, indicating that both noise stressors induced comparable extraaural effects. Factor annoyance showed significant during CALM. Here a reduced sympathetic drive (higher PEP values) combined with an increased vascular tone (higher TPR values) was found at the high-annoyed subgroup.


Assuntos
Automóveis , Exposição Ambiental/efeitos adversos , Memória de Curto Prazo , Ruído dos Transportes/efeitos adversos , Ferrovias , Adulto , Biomarcadores/análise , Pressão Sanguínea , Eletrocardiografia , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade
16.
Front Hum Neurosci ; 9: 407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236220

RESUMO

This study examines with transcranial magnetic stimulation (TMS) and with functional magnetic resonance imaging (fMRI) whether 20 min of repetitive peripheral magnetic stimulation (rPMS) has a facilitating effect on associated motor controlling regions. Trains of rPMS with a stimulus intensity of 150% of the motor threshold (MT) were applied over right hand flexor muscles of healthy volunteers. First, with TMS, 10 vs. 25 Hz rPMS was examined and compared to a control group. Single and paired pulse motor evoked potentials (MEPs) from flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles were recorded at baseline (T0), post rPMS (T1), 30 min post (T2), 1 h post (T3) and 2 h post rPMS (T4). Then, with fMRI, 25 Hz rPMS was compared to sham stimulation by utilizing a finger tapping activation paradigm. Changes in bloodoxygen level dependent (BOLD) contrast were examined at baseline (PRE), post rPMS (POST1) and 1 h post rPMS (POST2). With TMS facilitation was observed in the target muscle (FCR) following 25 Hz rPMS: MEP recruitment curves (RCs) were increased at T1, T2 and T3, and intracortical facilitation (ICF) was increased at T1 and T2. No effects were observed following 10 Hz rPMS. With fMRI the BOLD contrast at the left sensorimotor area was increased at POST1. Compared to inductions protocols based on transcutaneous electrical stimulation and mechanical stimulation, the rPMS induced effects appeared shorter lasting.

17.
Behav Brain Res ; 287: 27-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25804362

RESUMO

Transcranial direct current stimulation (tDCS) protocols applied over the primary motor cortex are associated with changes in motor performance. This transcranial magnetic stimulation (TMS) study examines whether cathodal tDCS prior to motor training, combined with anodal tDCS during motor training improves motor performance and off-line learning. Three study groups (n=36) were trained on the grooved pegboard test (GPT) in a randomized, between-subjects design: SHAM-sham stimulation prior and during training, STIM1-sham stimulation prior and atDCS during training, STIM2-ctDCS stimulation prior and atDCS during training. Motor performance was assessed by GPT completion time and retested 14 days later to determine off-line learning. Cortical excitability was assessed via TMS at baseline (T0), prior training (T1), after training (T2), and 60 min after training (T3). Motor evoked potentials (MEP) were recorded from m. abductor pollicis brevis of the active left hand. GPT completion time was reduced for both stimulated groups compared to SHAM. For STIM2 this reduction in time was significantly higher than for STIM1 and further off-line learning occurred after STIM2. After ctDCS at T1, MEP amplitude and intracortical facilitation was decreased and intracortical inhibition was increased. After atDCS at T2, an opposite effect was observed for STIM1 and STIM2. For STIM2 these neuromodulatory effects were retained until T3. It is concluded that application of atDCS during the training improves pegboard performance and that additional priming with ctDCS has a positive effect on off-line learning. These cumulative behavioral gains were indicated by the preceding neuromodulatory changes.


Assuntos
Atividade Motora , Córtex Motor/fisiologia , Plasticidade Neuronal , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Potencial Evocado Motor , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
18.
Behav Brain Res ; 270: 171-8, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24844752

RESUMO

To examine whether afferent stimulation of hand muscles has a facilitating effect on motor performance, learning and cortical excitability, healthy subjects were trained on the grooved pegboard test (GTP) while wearing a mesh glove (MG) with incorporated electrical stimulation. Three study groups (n=12) were compared in a between subjects design, the bare handed (BH), gloved (MG) and gloved with electrical stimulation (MGS) groups. Motor performance was assessed by the GPT completion time across 4 training blocks, and further one block was retested 7 days later to determine the off-line effects. On-line learning was obtained by normalizing the completion time values to the first training block, and off-line learning was obtained by normalizing the retest values to the last training block. Cortical excitability was assessed via single and paired-pulse transcranial magnetic stimulation (TMS) at pre-training, post-training and 30 min post-training. Motor evoked potential recruitment curve, short-latency intracortical inhibition and intracortical facilitation were estimated from the TMS assessments. Motor performance across all 4 training blocks was poor in the MG and MGS groups, while on-line learning was not affected by wearing the glove or by afferent stimulation. However, off-line learning, tested 7 days after training, was improved in the MGS group compared to the MG group. In addition, post-training corticospinal excitability was increased in the MGS group. It can be concluded that afferent stimulation improves off-line learning and thus has a positive effect on motor memory, likely due to LTP-like cortical plasticity in the consolidation phase.


Assuntos
Potencial Evocado Motor/fisiologia , Luvas Protetoras , Mãos/fisiologia , Memória , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Adolescente , Adulto , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Testes Neuropsicológicos , Tempo de Reação , Estimulação Magnética Transcraniana , Adulto Jovem
19.
Hum Brain Mapp ; 34(11): 2767-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22611041

RESUMO

It has been recently shown that 20 min of mechanical flutter stimulation induces lasting motor cortical excitability changes, as assessed by transcranial magnetic stimulation in relaxed hand muscles. The present functional magnetic resonance imaging (fMRI) study aims to examine if such neuromodulatory changes are reflected in the BOLD signal during a motor test. Therefore, two groups were recruited: one group receiving whole-hand flutter stimulation with a frequency of 25 Hz (FSTIM group, n = 22) and a second group receiving no stimulation (NOSTIM group, n = 22). As motor test finger-to-thumb tapping was performed to activate a wide sensorimotor network during the fMRI measurements. Three fMRI measurements were obtained with this test: before stimulation (PRE), after stimulation (POST1), and 1 h after stimulation (POST2). Three regions of interest (ROIs) were defined: primary motor area (M1), primary somatosensory area (S1), and supplementary motor area. In the absence of baseline differences between both groups, the FSTIM group showed increased movement-related brain activations compared with the NOSTIM group, both at POST1 and POST2. ROI analysis revealed increased blood-oxygenation-level-dependent (BOLD) responses within contralateral S1 (+20%) and M1 (+25%) at POST1, which lasted until POST2. These poststimulatory effects within S1 and M1 obviously reflect neuroplastic changes associated with augmented cortical excitability. These findings are of high clinical relevance, for example, to improve the treatment of stroke patients.


Assuntos
Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Sinais (Psicologia) , Interpretação Estatística de Dados , Feminino , Dedos/fisiologia , Mãos/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Oxigênio/sangue , Estimulação Física , Desempenho Psicomotor/fisiologia , Adulto Jovem
20.
Clin Neurophysiol ; 123(1): 193-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21764634

RESUMO

OBJECTIVE: In a previous transcranial magnetic stimulation (TMS) study we demonstrated that suprathreshold mesh-glove (MG) whole-hand stimulation elicits lasting changes in motor cortical excitability. Currently, there is no consensus with regard to the optimal parameters for the induction of sensorimotor cortical plasticity using peripheral electrical stimulation. Thus, in the present study we explore the modulatory effects of MG stimulation at different stimulus intensities and different frequencies in order to identify an optimal stimulation protocol. METHODS: MG stimulation was performed on 12 healthy subjects in separate sessions at different stimulation levels: sub-sensory at 50 Hz, sensory at 50 Hz and motor at 2 Hz. To verify if stimulation at lower frequencies is less effective, an additional experiment at sensory level with 2 Hz was performed. TMS was used to assess motor threshold (MT), motor evoked potentials (MEPs) recruitment curve (RC), short latency intracortical inhibition (SICI) and intracortical facilitation (ICF) to paired-pulse TMS at baseline (T0), immediately after (T1) and 1h (T2) after 30 min of MG stimulation. F-wave studies were performed to assess spinal motoneuron excitability. RESULTS: MG stimulation at sub-sensory/50 Hz and sensory/2 Hz level determines no significant cortical excitability changes; at sensory/50 Hz level and at motor/2 Hz level we found decreased MT, increased MEP RC as well as reduced SICI and increased ICF at T1 and T2. CONCLUSIONS: MG stimulation at sensory/50 Hz and motor/2 Hz level induces similar long-lasting modulatory effects on motor cortical excitability. Both the strength of the corticospinal projections and the intracortical networks are influenced to the same extend. SIGNIFICANCE: The study provides further evidence that stimulation intensity and frequency can independently modulate motor cortical plasticity. The selection of optimal stimulation parameters has potentially important implications for the neurorehabilitation of patients after brain damage (e.g. stroke, traumatic brain injury) with hand motor deficits.


Assuntos
Estimulação Elétrica , Mãos/fisiologia , Córtex Motor/fisiologia , Adulto , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...