Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171351, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432370

RESUMO

Cigarette smoke contains many chemicals that are harmful to both smokers and non-smokers. Breathing just a little cigarette smoke can be harmful. There are >7000 chemicals in cigarette smoke, at least 250 are known to be harmful and many of them can cause cancer. Currently, many studies reported the types of harmful organic compounds in cigarette smoke; instead, there are almost no works that describe the presence of inorganic compounds. In this work, a cost-effective self-made passive sampler (SMPS) was tested as a tool to collect different types of particulate matter (PM) from cigarette smoke containing metals as hazardous compounds (HCs). To determine the nature of the metals, nonmetals and metalloids as HCs, a direct qualitative analysis of the particulate matter (PM) was conducted without developing any special sample preparation procedure. For that, non-invasive elemental (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) and molecular (Raman microscopy) micro-spectroscopic techniques were used. Thanks to this methodology, it was possible to determine in deposited PM, the presence of metals such as Fe, Cr, Ni, Ti, Co, Sn, Zn, Ba, Al, Cu, Zr, Ce, Bi, etc. most of them as oxides but also embedded in different clusters with sulfates, aluminosilicates, even phosphates.


Assuntos
Fumar Cigarros , Metaloides , Humanos , Metaloides/análise , Metais , Material Particulado/análise , Espectrometria por Raios X
2.
Chemosphere ; 309(Pt 2): 136743, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209867

RESUMO

Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requires efforts to cover extensive areas. The use of biological systems as passive samplers might be a solution that provides information about air pollution to assist decision-makers in environmental health and urban planning. This study aims to employ subaerial biofilms (SABs) growing naturally on façades of historical and recent constructions as natural passive biomonitors of atmospheric heavy metals pollution. Concretely, SABs spontaneously growing on constructions located in a tropical climate, like the one of the city of Barranquilla (Colombia), have been used to develop the methodological approach here presented as an alternative to SABS grown under laboratory conditions. After a proper identification of the biocolonizers in the SAB through taxonomic and morphological observations, the study of the particulate matter accumulated on the SABs of five constructions was conducted under a multi-analytical approach based mainly on elemental imaging studies by micro Energy Dispersive X-ray fluorescence spectrometry (µ-EDXRF) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry (SEM-EDS) techniques, trying to reduce the time needed and associated costs. This methodology allowed to discriminate metals that are part of the original structure of the SABs, from those coming from the anthropogenic emissions. The whole methodology applied assisted the identification of the main metallic particles that could be associated with nearby anthropogenic sources of emission such as Zn, Fe, Mn, Ni and Ti by SEM-EDS and by µ-EDXRF Ba, Sb, Sn, Cl and Br apart others; revealing that it could be used as a good alternative for a rapid screening of the atmospheric heavy metals pollution.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Monitoramento Ambiental/métodos , Clima Tropical , Metais Pesados/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Biofilmes
3.
Chemosphere ; 263: 128190, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297155

RESUMO

In analytical chemistry, biomonitoring is known as the methodology, which consider the use of living organisms to monitor and assess the impact of different contaminants in a known area. This type of monitoring is a relatively inexpensive method and easy to implement, being a viable alternative to be developed in sites where there is no infrastructure/instruments for a convenctional air quality monitoring. These organisms, having the capability to monitor the pollution, are also known as passive biomonitors (PBs), since they are able to identify possible contamination sources without the need of any additional tool. In this work, a multianalytical methodology was applied to verify the usefulness of naturally growing Grimmia genus mosses as PBs of atmospheric heavy metals pollution. Once mosses were identified according to their morphology and taxonomy, thei ability to accumulate particulate matter (PM) was determined by SEM. EDS coupled to SEM also allowed to identify the main metallic particles deposited and finally, an acid digestion of the mosses and a subsequent ICP-MS study define more precisely the levels of metals accumulated on each collected moss. The study was focused on six sampling locations from the Bilbao Metropolitan area (Biscay, Basque Country, north of Spain). The experimental evidences obtained allowed to propose naturally growing Grimmia genus as PB of atmospheric heavy metals pollution and to identify the anthropogenic sources that contribute to the emission of the airborne particulate matter rich in metals, evaluating in this sense the atmospheric heavy metals pollution of the selected locations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Briófitas , Metais Pesados , Poluentes Atmosféricos/análise , Atmosfera , Monitoramento Ambiental , Metais Pesados/análise , Espanha
5.
Sci Total Environ ; 745: 140899, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32721614

RESUMO

Marine aerosol is a chemical complex system formed by inorganic salts and organic matter, together with airborne particulate matter from the surrounding environment. The primary particles transported in the marine aerosol can experiment different chemical reactions in the atmosphere, promoting the so-called Secondary Marine Aerosol particles. These kinds of particles (nitrates, sulfates, chlorides etc.), together with the natural crustal or mineral particles and the metallic airborne particulate matter emitted by anthropogenic sources (road traffic, industry, etc.) form clusters which then can be deposited on building materials from a specific construction following dry deposition processes. Apart from that, the acid aerosols (e.g. CO2, SO2, NOX, etc.) present in urban-industrial environments, coming also from anthropogenic sources, can be deposited in the buildings following dry or a wet deposition mechanisms. The interactions of these natural and anthropogenic stressors with building materials can promote different kind of pathologies. In this overview, the negative influence of different marine environments (direct or diffuse influence), with or without the influence of an urban-industrial area (direct or diffuse), on the conservation state of historical constructions including a wide variety of building materials (sandstones, limestones, artificial stones, bricks, plasters, cementitious materials, etc.) is presented.

6.
Chemosphere ; 259: 127482, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32640380

RESUMO

Speciation of respirable particles is becoming increasingly important from an epidemiological and analytical point of view to determine the potential effects of air pollution on human health. For this reason, current laws and analytical sampling methods focus on particle size, as it turns out to be the main factor for the greater or lesser penetration into the airways. In this sense, particles of less than 10 µm in diameter (<10 µm), referred to as PM10, are the particles that have a higher capacity for access to the respiratory tract and, therefore, more significant effect on them. In this sense, one of the most important factors that have a key role in the PM10 atmospheric pollution effect is the dispersion effect with the direct influence of natural effects such as wind, rain, topography apart from others. In this work, PM10 data extracted from the Basque Government environmental stations (19 sampling points) in the Biscay province (Basque Country, north of Spain) were combined with the results obtained from the use of self-made passive samplers (SMPS) in the same sampling points areas and subsequently, the sample analysis with a non-invasive elemental technique (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) was carried out. Thanks to this methodology, it was possible to determine a wide variety of metals in PM10 such as Al, Fe, Cr, Ni, Pb, Zn, Ti, etc. Most of them present as oxides and others as part of natural aggregations such as quartz, aluminosilicates, phosphates etc.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Metais/análise , Tamanho da Partícula , Material Particulado/análise , Chuva , Espanha , Espectrometria por Raios X , Vento
7.
Chemosphere ; 242: 125249, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896203

RESUMO

Machu Picchu is an archaeological Inca sanctuary from the 15th century, located 2430 m above the sea level in the Cusco Region, Peru. In 1983, it was declared World Heritage Site by UNESCO. The surroundings and soils from the entire archaeological site are carefully preserved together with its grass parks. Due to the importance of the archaeological city and its surroundings, the Decentralized Culture Directorate of Cusco-PAN Machu Picchu decided to carry out a careful monitoring study in order to determine the ecological status of the soils. In this work, elemental and molecular characterization of 17 soils collected along the entire park was performed by means of X-ray Diffraction (XRD) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after acidic digestion assisted by microwave energy. Thanks to the combination of these analytical techniques, it was possible to obtain the mineral composition and metal concentrations of all soils from these 17 sampling points. Finally, different statistical treatments were carried out in order to confirm the ecological status of the different sampling points from Machu Picchu archaeological site concluding that soils are not impacted.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes do Solo/análise , Cidades , Metais Pesados/análise , Peru , Solo/química , Difração de Raios X
8.
Saudi J Biol Sci ; 26(7): 1325-1330, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762591

RESUMO

The objective was evaluate the carotenogenic activity of Dunaliella salina isolated from the artificial salt flats of municipality of Manaure (Department of La Guajira, Colombia). Two experimental testings were designed, in triplicate, to induce the reversibility of the cell tonality depending on the culture conditions. In the first test (A), to induce the reversibility from green to red tonality in D. salina cells, these were cultured in J/1 medium at a concentration of 4.0 M NaCl, 390 µmol m-2 s-1, 0.50 mM KNO3. In the second test (B), to induce the reversibility from red to green cell tonality, the cultures were maintained in J/1 medium 1 M NaCl, 190 µmol m-2 s-1, 5.0 mM KNO3 and pH 8.2. The population growth was evaluated by cell count and the pigment content was performed by spectrophotometric techniques. It was found that in both tests the culture conditions influenced the population growth and the pigments production of D. salina. There was a significant difference between the mean values of total carotenoids in the test A with 9.67 ±â€¯0.19 µg/ml and second test with 1.54 ±â€¯0.08 µg/ml at a significance level of p < 0.05. It was demonstrated that the culture conditions of test A induce the production of lipophilic antioxidants, among these carotenoids. The knowledge of the stressful conditions for the production of carotenoids from D. salina isolated from artificial saline of Manaure opens a field in implementation of this biotic resource for biotechnological purposes, production of new antibiotics, nutraceuticals and/or biofuels production.

9.
Sci Total Environ ; 692: 23-31, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31336297

RESUMO

Machu Picchu citadel is the main archaeological Inca sanctuary widely known around the world, and a World Heritage Site of high cultural and natural value. For its construction a whitish granitic rock, extracted from the "Vilcapampa or Vilcabamba" batholith formation was used. During time, some of the granitic rocks from the natural stonewalls of the Meditation area of the Archaeological Park were restored. For the restoration works done in the 50s' a specific lime mortar called Clarobesa was used. After the inclusion of this joining mortar, many efflorescences are nowadays visible in the mortar itself and on the surface of the edges of the annexed rocks. To evaluate the possible impact of these salts crystallizations in the conservation state of these natural stonewalls, a multi-analytical methodology was designed and applied. With a combination of non-invasive and destructive techniques such as X-ray Diffraction, Raman microscopy, Scanning Electron Microscope coupled to an Energy Dispersive X-ray Spectrometer and ion chromatography, the mineralogical composition and the nature/concentration of the soluble salts present in the Clarobesa mortar was determined. The experimental results suggest that Clarobesa mortar is a hydraulic lime mortar. The study of salts crystallizations by Raman microscopy allowed identifying the presence of calcium sulfates with different hydration waters and also nitrates. In some samples, the concentration of sulfates was high, reaching values up to 10% w/w. Although the concentration of nitrates is not extremely high, a clear contribution of ammonium nitrates coming from the decomposition of the nearby vegetation was assessed. Since the Clarobesa mortar can be considered an important input of ions that can migrate to the joined granitic rocks, in the future, it will be recommendable to monitor possible changes in the conservation state of the joined rocks.

10.
Sci Total Environ ; 654: 1379-1388, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527887

RESUMO

Machu Picchu Inca sanctuary (Cusco Region, Peru) was constructed on a granitic plateau, better known as Vilcabamba batholith. One of the most important carved granitic rocks from this archaeological site is the Sacred Rock, used by Inca citizens for religious rituals. Due to the location and climatic conditions, different rocks from this archaeological site are affected by biocolonizations. Concretely, the Sacred Rock shows flaking and delamination problems. In this work, a non-destructive multi analytical methodology has been applied to determine the possible role of the biodeteriogens, forming the biological patina on the Sacred Rock, in the previously mentioned conservation problems. Before characterizing the biological patina, a mineralogical characterization of the granitic substrate was conducted using X-ray Diffraction, Raman microscopy (RM) and micro energy dispersive X-ray fluorescence spectrometry. For the identification of the main biodeteriogens in the biofilm, Phase Contrast Microscopy was used. RM also allowed to determine the distribution (imaging) and the penetration (depth profiling) of the biogenic pigments present in the biopatina. Thanks to this study, it was possible to asses that some colonizers are growing on inner areas of the rock, reinforcing their possible assistance in the delamination. Moreover, the in-depth distribution of a wide variety of carotenoids in the patinas allowed to approach the penetration ability of the main biodeteriogens and the diffusion of these biogenic pigments to the inner areas of the rocky substrate.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cianobactérias/fisiologia , Líquens/fisiologia , Microalgas/fisiologia , Arqueologia , Cianobactérias/isolamento & purificação , Líquens/isolamento & purificação , Microalgas/isolamento & purificação , Microscopia Óptica não Linear , Peru , Pigmentos Biológicos/classificação , Dióxido de Silício , Espectrometria por Raios X , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...