Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133723, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359761

RESUMO

Small microplastics (SMPs < 100 µm) can easily be transported over long distances far from their sources through the atmospheric pathways and reach even remote regions, including the Arctic. However, these sizes of MPs are mostly overlooked due to different analytical challenges; besides, their pathways through atmospheric depositions, such as snow depositions, are mostly unknown. The spatial variability in bulk snow samples was investigated for the first time in distinct sites (e.g., glaciers) near Ny Ålesund, the world-known northernmost permanent research settlement in the Svalbard Islands, to better comprehend the presence of SMP pollution in snow. Seasonal snow deposited over the tundra and the summits of different glaciers were also sampled. A sampling procedure was designed to obtain representative samples while minimizing plastic contamination, thanks to rigorous quality assurance and quality control protocol. SMPs' weight (µg SMP L-1) and deposition load (mg SMPs m-2) result from being lower in the remote glaciers, where they may be subject to long-range transport. The SMPs' minimum length was 20 µm, with the majority less than 100 µm. Regarding their size distribution, there was an increase in the size length deriving from the local input of the human presence near the scientific settlement. The presence of some polymers might be site-specific in relation to the pathways that affect their distribution at the sites studied. Also, from the snow surface layer collected at the same sites to evaluate the variability of SMPs during specific atmospheric deposition events, the results confirmed their higher weight and load in surface snow near the scientific settlement compared to the glaciers. The results will enhance the limited knowledge of the SMPs in polar atmospheric compartments and deposition processes.

2.
J Hazard Mater ; 452: 131317, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003004

RESUMO

The primary environmental concern related to nuclear power is the production of radioactive waste hazardous to humans and the environment. The main scientific and technological problems to address this are related to the storage and disposal of the nuclear waste and monitoring the dispersion of radioactive species into the environment. In this work, we determined an anomalously high 14C activity, well above the modern natural background, on surface and seasonal snow sampled in early May 2019 on glaciers in the Hornsund fjord area (Svalbard). Due to the lack of local sources, the high snow concentrations of 14C suggest long-range atmospheric transport of nuclear waste particles from lower latitudes, where nuclear power plants and treatment stations are located. The analysis of the synoptic and local meteorological data allowed us to associate the long-range transport of this anomalous 14C concentration to an intrusion event of a warm and humid air mass that likely brought pollutants from Central Europe to the Arctic in late April 2019. Elemental and organic carbon, trace element concentration data, and scanning electron microscopy morphological analysis were performed on the same snow samples to better constrain the transport process that might have led to the high 14C radionuclide concentrations in Svalbard. In particular, the highest 14C values found in the snowpack (> 200 percent of Modern Carbon, pMC) were associated with the lowest OC/EC ratios (< 4), an indication of an anthropogenic industrial source, and with the presence of spherical particles rich in iron, zirconium, and titanium which, altogether, suggest an origin related to nuclear waste reprocessing plants. This study highlights the role of long-range transport in exposing Arctic environments to human pollution. Given that the frequency and intensity of these atmospheric warming events are predicted to increase due to ongoing climate change, improving our knowledge of their possible impact to Arctic pollution is becoming urgent.

3.
Microbiome ; 11(1): 35, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864462

RESUMO

BACKGROUND: Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS: We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS: While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS: These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.


Assuntos
Bactérias , Camada de Gelo , Teorema de Bayes , Estações do Ano , Bactérias/genética , Biodiversidade
4.
Chemosphere ; 267: 129335, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33352366

RESUMO

Fe(II) is more soluble and bioavailable than Fe(III) species, therefore the investigation of their relative abundance and redox processes is relevant to better assess the supply of bioavailable iron to the ocean and its impact on marine productivity. In this context, we present a discrete chemiluminescence-based method for the determination of Fe(II) in firn matrices. The method was applied on discrete samples from a snow pit collected at Dome C (DC, Antarctica) and on a shallow firn core from the Holtedahlfonna glacier (HDF, Svalbard), providing the first Fe(II) record from both Antarctica and Svalbard. The method showed low detection limits (0.006 ng g-1 for DC and 0.003 ng g-1 for the HDF) and a precision ranging from 3% to 20% RSD. Fe(II) concentrations ranged between the LoD and 0.077 ng g-1 and between the LoD and 0.300 ng g-1 for the Antarctic and Arctic samples, respectively. The Fe(II) contribution with respect to the total dissolved Fe was comparable in both sites accounting, on average, for 5% and 3%, respectively. We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).


Assuntos
Camada de Gelo , Ferro , Regiões Antárticas , Regiões Árticas , Compostos Ferrosos , Reprodutibilidade dos Testes , Svalbard
5.
Sci Total Environ ; 751: 141640, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32892077

RESUMO

Nearly all ice core archives from the Arctic and middle latitudes (such as the Alps), apart from some very high elevation sites in Greenland and the North Pacific, are strongly influenced by melting processes. The increases in the average Arctic temperature has enhanced surface snow melting even of higher elevation ice caps, especially on the Svalbard Archipelago. The increase of the frequency and altitude of winter "rain on snow" events as well as the increase of the length of the melting season have had a direct impact on the chemical composition of the seasonal and permanent snow layers due to different migration processes of water-soluble species, such as inorganic ions. This re-allocation along the snowpack of ionic species could significantly modify the original chemical signal present in the annual snow. This paper aims to give a picture of the evolution of the seasonal snow strata with a daily time resolution to better understand: a) the processes that can influence deposition b) the distribution of ions in annual snow c) the impact of the presence of liquid water on chemical re-distribution within the annual snow pack. Specifically, the chemical composition of the first 100 cm of seasonal snow on the Austre Brøggerbreen Glacier (Spitsbergen, Svalbard Islands, Norway) was monitored daily from the 27th of March to the 31st of May 2015. The experimental period covered almost the entire Arctic spring until the melting season. This unique dataset gives us a daily picture of the snow pack composition, and helps us to understand the behaviour of cations (K+, Ca2+, Na+, Mg2+) and anions (Br-, I-, SO42-, NO3-, Cl-, MSA) in the Svalbard snow pack. We demonstrate that biologically related depositions occur only at the end of the snow season and that rain and melting events have different impacts on the snowpack chemistry.

6.
Sci Total Environ ; 607-608: 454-462, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28711841

RESUMO

The role of oceanic primary production on climate variability has long been debated. Defining changes in past oceanic primary production can help understanding of the important role that marine algae have in climate variability. In ice core research methanesulfonic acid is the chemical marker commonly used for assessing changes in past primary production. However, other organic compounds such as amino acids, can be produced and emitted into the atmosphere during a phytoplankton bloom. These species can be transported and deposited onto the ice cap in polar regions. Here we investigate the correlation between the concentration of chlorophyll-a, marker of marine primary production, and amino acids present in an ice core. For the first time, free l- and d-amino acids in Arctic snow and firn samples were determined by a sensitive and selective analytical method based on liquid chromatography coupled with tandem mass spectrometry. The new method for the determination of free amino acids concentrations was applied to firn core samples collected on April 2015 from the summit of the Holtedahlfonna glacier, Svalbard (N 79'08.424, E 13'23.639, 1120m a.s.l.). The main results of this work are summarized as follows: (1) glycine, alanine and proline, were detected and quantified in the firn core samples; (2) their concentration profiles, compared with that of the stable isotope δ18O ratio, show a seasonal cycling with the highest concentrations during the spring and summer time; (3) back-trajectories and Greenland Sea chlorophyll-a concentrations obtained by satellite measurements were compared with the amino acids profile obtained from ice core samples, this provided further insights into the present results. This study suggests that the amino acid concentrations in the ice samples collected from the Holtedahlfonna glaciers could reflect changes in oceanic phytoplankton abundance.


Assuntos
Aminoácidos/análise , Camada de Gelo/química , Fitoplâncton/metabolismo , Neve/química , Regiões Árticas , Cromatografia Líquida , Clima , Eutrofização , Oceanos e Mares , Estações do Ano , Svalbard , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...