Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(11): 6388-6396, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38380878

RESUMO

Cheese, a fundamental component of the human diet and a cornerstone of the global food economy, has a significance beyond its role as a commodity, playing a crucial part in the cultural identity of various communities. The intricate natural aging process known as maturation involves a series of reactions that induce changes in the cheese's physical, biochemical, microbiological, and particularly sensory characteristics, making it a complex aspect of cheese production. Recently, the adoption of omics sciences (e.g., metagenomics, metabolomics, proteomics) has emerged as a new trend in studies related to protected designation of origin (PDO) cheese. This mini-summary aims to outline the relationship between omics studies in these food matrices and all the sustainability facets of the production chain in general, and to discuss and recognize that the importance of these studies goes beyond comprehending the cheese biome and extends to fostering and ensuring the sustainability of the production chain. In this context, numerous studies in recent years have linked the identification of intrinsic characteristics of PDO cheeses through omics sciences to crucial sustainability themes such as territoriality, biodiversity, and the preservation of product authenticity. The trajectory suggests that, increasingly, multidisciplinary studies spanning various omics sciences will not only contribute to the characterization of these products but will also address sustainability aspects directly related to the production chain (e.g., authenticity, microbial biodiversity, functionality). This expansion underscores the multidisciplinary nature of these studies, broadening their social impact beyond the academic realm. Consequently, these pivotal studies play a crucial role in advancing discussions on PDO products and sustainability. © 2024 Society of Chemical Industry.


Assuntos
Queijo , Metabolômica , Metagenômica , Proteômica , Queijo/análise , Queijo/microbiologia , Humanos , Animais , Biodiversidade
2.
Microb Biotechnol ; 17(1): e14387, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38263855

RESUMO

In the current trend where plant-based foods are preferred over animal-based foods, pulses represent an alternative source of protein but also of bioactive peptides (BPs). We investigated the pattern of protein hydrolysis during fermentation of red lentils protein isolate (RLPI) with various lactic acid bacteria and yeast strains. Hanseniaspora uvarum SY1 and Fructilactobacillus sanfranciscensis E10 were the most proteolytic microorganisms. H. uvarum SY1 led to the highest antiradical, angiotensin-converting enzyme-inhibitory and antifungal activities, as found in low molecular weight water soluble extracts (LMW-WSE). The 2039 peptide sequences identified by LMW-WSE were screened using BIOPEP UWM database, and 36 sequences matched with known BPs. Fermentation of RLPI by lactic acid bacteria and yeasts generated 12 peptides undetected in raw RLPI. Besides, H. uvarum SY1 led to the highest abundance (peak areas) of BPs, in particular with antioxidant and ACE-inhibitory activities. The amino acid sequences LVR and LVL, identified in the fermented RLPI, represent novel findings, as they were detected for the first time in substrates subjected to microbial fermentation. KVI, another BP highly characteristic of RLPI-SY1, was previously observed only in dried bonito. 44 novel potential BPs, worthy of further characterization, were correlated with antifungal activity.


Assuntos
Lactobacillales , Lens (Planta) , Animais , Lactobacillales/metabolismo , Lens (Planta)/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antifúngicos , Filogenia , Peptídeos/farmacologia , Leveduras/metabolismo , Fermentação
3.
Int J Food Microbiol ; 411: 110548, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154252

RESUMO

In this study, a comprehensive and comparative analysis was conducted on Italian Asiago-PDO cheese obtained from two different dairies named Dairy I and Dairy II using industrial and natural fermented milk, respectively. The analysis encompassed the evaluation of chemical composition, the succession of the microbiota during manufacture and ripening, and proteolysis mainly focusing on free individual amino acid (FAA) profiles. A metagenomic approach was used to investigate the cheese microbiome functionality. Differences in gross chemical composition were more evident during ripening, with Dairy II showing higher variability within batches. The microbiota varied significantly between the two dairies and ripening stages. The choice of starter culture shaped the microbiota during production and affected the microbial diversity of non-starter lactic acid bacteria (NSLAB) originated from the raw milk during ripening. Peptide chromatographic profiles and FAA concentrations increased as ripening progressed, with Dairy I showing higher production of FAA. Functional analysis of the metagenomes linked species to specific amino acid metabolism/catabolism pathways. The amino acid metabolism pathways, particularly those related to aromatic amino acids, lysine, and branched-chain amino acids, were affected by the presence of specific NSLAB species, which differed between the two dairies. The results obtained in this study reveal the impact of starter culture on peculiar cheese microbiota assemblies, which selectively targets amino acid pathways, providing insights into the potential flavor and aroma characteristics of Asiago-PDO cheese.


Assuntos
Queijo , Lactobacillales , Animais , Proteólise , Aminoácidos/metabolismo , Queijo/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia
4.
Food Res Int ; 123: 393-402, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284991

RESUMO

Several factors might impact the proteolysis during cheese manufacture and ripening and, therefore, the release of bioactive peptides. These factors include the heat treatment of the milk, the type of starter and secondary culture used and the ripening time. Thus, the objective of this study was to evaluate the effect of the milk heat treatment and the use of adjunct culture in the development of the peptide profile of Camembert-type cheese during ripening. The cheeses were made from raw and heat-treated milk, with and without the addition of Lactobacillus rhamnosus GG. The results obtained by mass spectrometry (MALDI ToF/MS) and analyzed by chemometrics (PLS-DA) revealed a complex hydrolysis profile of the caseins with 103 peaks found, of which 70 peptides were identified and 15 presented bioactive potential. The potential bioactive peptides important for the separation of cheeses were all derived from ß-casein. The heat treatment of the milk, the addition of the adjunct culture and the ripening time affected the peptide profile of the cheeses. At the beginning of ripening the cheeses presented a very similar peptide profile, which differed over time, and this differentiation is clearer for cheeses obtained from raw milk.


Assuntos
Queijo/análise , Temperatura Alta , Lacticaseibacillus rhamnosus/metabolismo , Peptídeos/análise , Caseínas/análise , Fenômenos Químicos , Manipulação de Alimentos , Concentração de Íons de Hidrogênio , Hidrólise , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Int J Food Microbiol ; 234: 71-75, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27382958

RESUMO

Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste.


Assuntos
Bactérias/metabolismo , Queijo/microbiologia , Penicillium/metabolismo , Animais , Bactérias/classificação , Análise por Conglomerados , Leite/metabolismo , Penicillium/classificação , Análise de Componente Principal , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...