Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065279

RESUMO

Antimicrobial Photodynamic Therapy (aPDT) is an innovative and promising method for combating infections, reducing the risk of antimicrobial resistance compared to traditional antibiotics. Squaraine (SQ) dyes can be considered promising photosensitizers (PSs) but are generally hydrophobic molecules that can self-aggregate under physiological conditions. To overcome these drawbacks, a possible solution is to incorporate SQs inside nanoparticles (NPs). The present work deals with the design and development of innovative nanophotosensitizers based on poly lactic-co-glycolic acid (PLGA) NPs incorporating a brominated squaraine (BrSQ) with potential application in aPDT. Two designs of experiments (DoEs) based on the single emulsion and nanoprecipitation methods were set up to investigate how different variables (type of solvent, solvent ratio, concentration of PLGA, stabilizer and dye, sonication power and time) can affect the size, zeta (ζ)-potential, yield, entrapment efficiency, and drug loading capacity of the SQ-PLGA NPs. SQ-PLGA NPs were characterized by NTA, FE-SEM, and UV-Vis spectroscopy and the ability to produce reactive oxygen species (ROS) was evaluated, proving that ROS generation ability is preserved in SQ-PLGA. In vitro antimicrobial activity against Gram-positive bacteria in planktonic state using Staphylococcus aureus was conducted in different conditions and pH to evaluate the potential of these nanophotosensitizers for aPDT in the local treatment of infections.

2.
J Chem Inf Model ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950140

RESUMO

Deep eutectic solvents (DESs) have attracted increasing attention in recent years due to their broad applicability in different fields, but their computer-aided discovery, which avoids a time-consuming trial-and-error investigation, is still lagging. In this paper, a set of nine DESs, composed of choline chloride as a hydrogen-bond acceptor and nine functionalized phenols as hydrogen bond donors, is simulated by using classical molecular dynamics to investigate the possible formation of a DES. The tool of the Voronoi tessellation analysis is employed for producing an intuitive and straightforward representation of the degree of mixing between the different components of the solutions, therefore permitting the definition of a metric quantifying the propensity of the components to produce a uniform solution. The computational findings agree with the experimental results, thus confirming that the Voronoi tessellation analysis can act as a lightweight yet powerful approach for the high-throughput screening of mixtures in the optics of the new DES design.

3.
Energy Adv ; 3(5): 1062-1072, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38766406

RESUMO

Dye-sensitized solar cells assembled with aqueous electrolytes are emerging as a sustainable photovoltaic technology suitable for safe indoor and portable electronics use. While the scientific community is exploring unconventional materials for preparing electrodes and electrolytes, this work presents the first study on zinc oxide as a semiconductor material to fabricate photoanodes for aqueous solar cells. Different morphologies (i.e., nanoparticles, multipods, and desert roses) are synthesized, characterized, and tested in laboratory-scale prototypes. This exploratory work, also integrated by a computational study and a multivariate investigation on the factors that influence electrode sensitization, confirms the possibility of using zinc oxide in the field of aqueous photovoltaics and opens the way to new morphologies and processes of functionalization or surface activation to boost the overall cell efficiency.

4.
Nanotechnology ; 34(29)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37019100

RESUMO

The increasing energy demand and the ever more pressing need for clean technologies of energy conversion pose one of the most urgent and complicated issues of our age. Thermoelectricity, namely the direct conversion of waste heat into electricity, is a promising technique based on a long-standing physical phenomenon, which still has not fully developed its potential, mainly due to the low efficiency of the process. In order to improve the thermoelectric performance, a huge effort is being made by physicists, materials scientists and engineers, with the primary aims of better understanding the fundamental issues ruling the improvement of the thermoelectric figure of merit, and finally building the most efficient thermoelectric devices. In this Roadmap an overview is given about the most recent experimental and computational results obtained within the Italian research community on the optimization of composition and morphology of some thermoelectric materials, as well as on the design of thermoelectric and hybrid thermoelectric/photovoltaic devices.

5.
Chemistry ; 28(25): e202104552, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35244293

RESUMO

Three novel diketopyrrolopyrrole (DPP) based small molecules have been synthesized and characterized in terms of their chemical-physical, electrochemical and electrical properties. All the molecules consist of a central DPP electron acceptor core symmetrically functionalized with donor bi-thienyl moieties and flanked in the terminal positions by three different auxiliary electron-acceptor groups. This kind of molecular structure, characterized by an alternation of electron acceptor and donor groups, was purposely designed to provide a significant absorption at the longer wavelengths of the visible spectrum: when analysed as thin films, in fact, the dyes absorb well over 800 nm and exhibit a narrow optical bandgap down to 1.28 eV. A detailed DFT analysis provides useful information on the electronic structure of the dyes and on the features of the main optical transitions. Organic field-effect transistors (OFETs) have been fabricated by depositing the DPP dyes as active layers from solution: the different end-functionalization of the dyes had an effect on the charge-transport properties with two of the dyes acting as n-type semiconductors (electron mobility up to 4.4 ⋅ 10-2  cm2 /V ⋅ s) and the third one as a p-type semiconductor (hole mobility up to 2.3 ⋅ 10-3  cm2 /V ⋅ s). Interestingly, well-balanced ambipolar transistors were achieved by blending the most performant n-type and p-type dyes with hole and electron mobility in the order of 10-3  cm2 /V ⋅ s.

6.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806671

RESUMO

The investigation of innovative electrolytes based on nontoxic and nonflammable solvents is an up-to-date, intriguing challenge to push forward the environmental sustainability of dye-sensitized solar cells (DSSCs). Water is one of the best choices, thus 100% aqueous electrolytes are proposed in this work, which are gelled with xanthan gum. This well-known biosourced polymer matrix is able to form stable and easily processable hydrogel electrolytes based on the iodide/triiodide redox couple. An experimental strategy, also supported by the multivariate chemometric approach, is used here to study the main factors influencing DSSCs efficiency and stability, leading to an optimized system able to improve its efficiency by 20% even after a 1200 h aging test, and reaching an overall performance superior to 2.7%. In-depth photoelectrochemical investigation demonstrates that DSSCs performance based on hydrogel electrolytes depends on many factors (e.g., dipping conditions, redox mediator concentrations, etc.), that must be carefully quantified and correlated in order to optimize these hydrogels. Photovoltaic performances are also extremely reproducible and stable in an open cell filled in air atmosphere, noticeably without any vacuum treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...