Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomes ; 12(1)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535505

RESUMO

Neural regeneration and neuroprotection represent strategies for future management of neurodegenerative disorders such as Alzheimer's disease (AD) or glaucoma. However, the complex molecular mechanisms that are involved in neuroprotection are not clearly understood. A promising candidate that maintains neuroprotective signaling networks is neuroserpin (Serpini1), a serine protease inhibitor expressed in neurons which selectively inhibits extracellular tissue-type plasminogen activator (tPA)/plasmin and plays a neuroprotective role during ischemic brain injury. Abnormal function of this protein has been implicated in several conditions including stroke, glaucoma, AD, and familial encephalopathy with neuroserpin inclusion bodies (FENIB). Here, we explore the potential biochemical roles of Serpini1 by comparing proteome changes between neuroserpin-deficient (NS-/-) and control mice, in the retina (RE), optic nerve (ON), frontal cortex (FC), visual cortex (VC), and cerebellum (CB). To achieve this, a multiple-plex quantitative proteomics approach using isobaric tandem mass tag (TMT) technology was employed followed by functional enrichment and protein-protein interaction analysis. We detected around 5000 proteins in each tissue and a pool of 6432 quantified proteins across all regions, resulting in a pool of 1235 differentially expressed proteins (DEPs). Principal component analysis and hierarchical clustering highlighted similarities and differences in the retina compared to various brain regions, as well as differentiating NS-/- proteome signatures from control samples. The visual cortex revealed the highest number of DEPs, followed by cerebellar regions. Pathway analysis unveiled region-specific changes, including visual perception, focal adhesion, apoptosis, glutamate receptor activation, and supramolecular fiber organization in RE, ON, FC, VC, and CB, respectively. These novel findings provide comprehensive insights into the region-specific networking of Serpini1 in the central nervous system, further characterizing its potential role as a neuroprotective agent. Data are available via ProteomeXchange with identifier PXD046873.

2.
Mol Ther ; 31(7): 2056-2076, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905120

RESUMO

Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Proteína Beclina-1/metabolismo , Modelos Animais de Doenças , Glaucoma/genética , Glaucoma/terapia , Glaucoma/metabolismo , Apoptose/genética , Pressão Intraocular , Neuroserpina
3.
Front Neurol ; 13: 908081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785352

RESUMO

The severe acute respiratory syndrome-corona virus type 2 (SARS-CoV-2) is the cause of human coronavirus disease 2019 (COVID-19). Since its identification in late 2019 SARS-CoV-2 has spread rapidly around the world creating a global pandemic. Although considered mainly a respiratory disease, COVID-19 also encompasses a variety of neuropsychiatric symptoms. How infection with SARS-CoV-2 leads to brain damage has remained largely elusive so far. In particular, it has remained unclear, whether signs of immune cell and / or innate immune and reactive astrogliosis are due to direct effects of the virus or may be an expression of a non-specific reaction of the brain to a severe life-threatening disease with a considerable proportion of patients requiring intensive care and invasive ventilation activation. Therefore, we designed a case-control-study of ten patients who died of COVID-19 and ten age-matched non-COVID-19-controls to quantitatively assess microglial and astroglial response. To minimize possible effects of severe systemic inflammation and / or invasive therapeutic measures we included only patients without any clinical or pathomorphological indication of sepsis and who had not been subjected to invasive intensive care treatment. Our results show a significantly higher degree of microglia activation in younger COVID-19 patients, while the difference was less and not significant for older COVID-19 patients. The difference in the degree of reactive gliosis increased with age but was not influenced by COVID-19. These preliminary data warrants further investigation of larger patient cohorts using additional immunohistochemical markers for different microglial phenotypes.

5.
Cell Mol Life Sci ; 78(19-20): 6409-6430, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405255

RESUMO

Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.


Assuntos
Neuropeptídeos/metabolismo , Serpinas/metabolismo , Animais , Axônios/metabolismo , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Polimerização , Neuroserpina
6.
Sci Rep ; 11(1): 8766, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888787

RESUMO

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death. Most investigations have concentrated on analysis of intracellular mechanisms such as endoplasmic reticulum (ER) stress, ER-associated protein degradation (ERAD) and oxidative stress. We have generated a HEK-293 cell model of FENIB by overexpressing G392E-mutant neuroserpin and in this study we examine trafficking and toxicity of this polymerogenic variant. We observed that a small fraction of mutant neuroserpin is secreted via the ER-to-Golgi pathway, and that this release can be pharmacologically regulated. Overexpression of the mutant form of neuroserpin did not stimulate cell death in the HEK-293 cell model. Finally, when treating primary hippocampal neurons with G392E neuroserpin polymers, we did not detect cytotoxicity or synaptotoxicity. Altogether, we report here that a polymerogenic mutant form of neuroserpin is secreted from cells but is not toxic in the extracellular milieu.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Neuropeptídeos/genética , Serpinas/genética , Sinapses/patologia , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Serpinas/metabolismo , Serpinas/fisiologia , Neuroserpina
7.
Front Neuroanat ; 15: 627896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708076

RESUMO

Neuroserpin is a serine protease inhibitor that regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin is strongly expressed during nervous system development as well as during adulthood, when it is predominantly found in regions eliciting synaptic plasticity. In the hippocampus, neuroserpin regulates developmental neurogenesis, synaptic maturation and in adult mice it modulates synaptic plasticity and controls cognitive and social behavior. High expression levels of neuroserpin in the neocortex starting from prenatal stage and persisting during adulthood suggest an important role for the serpin in the formation of this brain region and in the maintenance of cortical functions. In order to uncover neuroserpin function in the murine neocortex, in this work we performed a comprehensive investigation of its expression pattern during development and in the adulthood. Moreover, we assessed the role of neuroserpin in cortex formation by comparing cortical lamination and neuronal maturation between neuroserpin-deficient and control mice. Finally, we evaluated a possible regulatory role of neuroserpin at cortical synapses in neuroserpin-deficient mice. We observed that neuroserpin is expressed starting from the beginning of corticogenesis until adulthood throughout the neocortex in several classes of glutamatergic projection neurons and GABA-ergic interneurons. However, in the absence of neuroserpin we did not detect any alteration either in cortical layer formation, or in neuronal soma size and dendritic length. Furthermore, no significant quantitative changes were observed in the proteome of cortical synapses upon neuroserpin deficiency. We conclude that, although strongly expressed in the neocortex, absence of neuroserpin does not lead to gross developmental abnormalities, and does not perturb the composition of the cortical synaptic proteome.

8.
Brain Pathol ; 31(5): e12948, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33780087

RESUMO

Accumulating evidence suggests X-linked dominant mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD) through both loss- and gain-of-function mechanisms. However, the mechanisms by which the mutations cause disease are still unclear. The goal of the study was to uncover the possible pathomechanism(s) by which UBQLN2 mutations cause ALS/FTD. An analysis of proteomic changes in neuronal tissue was used to identify proteins with altered accumulation in the P497S UBQLN2 transgenic mouse model of ALS/FTD. We then used immunocytochemistry and biochemical techniques to confirm protein changes in the mutant P497S mice. Additionally, we used cell lines inactivated of UBQLN2 expression to determine whether its loss underlies the alteration in the proteins seen in P497S mice. The proteome screen identified a dramatic alteration of serine protease inhibitor (serpin) proteins in the mutant P497S animals. Double immunofluorescent staining of brain and spinal cord tissues of the mutant and control mice revealed an age-dependent change in accumulation of Serpin A1, C1, and I1 in puncta whose staining colocalized with UBQLN2 puncta in the mutant P497S mice. Serpin A1 aggregation in P497S animals was confirmed by biochemical extraction and filter retardation assays. A similar phenomenon of serpin protein aggregation was found in HeLa and NSC34 motor neuron cells with inactivated UBQLN2 expression. We found aberrant aggregation of serpin proteins, particularly Serpin A1, in the brain and spinal cord of the P497S UBQLN2 mouse model of ALS/FTD. Similar aggregation of serpin proteins was found in UBQLN2 knockout cells suggesting that serpin aggregation in the mutant P497S animals may stem from loss of UBQLN2 function. Because serpin aggregation is known to cause disease through both loss- and gain-of-function mechanisms, we speculate that their accumulation in the P497S mouse model of ALS/FTD may contribute to disease pathogenesis through similar mechanism(s).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Demência Frontotemporal/patologia , Serpinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Modelos Animais de Doenças , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Serpinas/metabolismo , Medula Espinal/patologia
9.
Mol Neurobiol ; 57(6): 2812-2829, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32367491

RESUMO

The structurally disordered N-terminal half of the prion protein (PrPC) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aß) in Alzheimer's disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1). Upon intracerebral inoculation of TgN1 mice with prions, no protective effects were observed at the levels of survival, clinical course, neuropathological, or molecular assessment. Likewise, primary neurons of these mice did not show protection against Aß toxicity. Our biochemical and morphological analyses revealed that this lack of protective effects is seemingly due to an impaired ER translocation of the disordered N1 resulting in its cytosolic retention with an uncleaved signal peptide. Thus, TgN1 mice represent the first animal model to prove the inefficient ER translocation of intrinsically disordered domains (IDD). In contrast to earlier studies, our data challenge roles of cytoplasmic N1 as a cell penetrating peptide or as a potent "anti-prion" agent. Lastly, our study highlights both the importance of structured domains in the nascent chain for proteins to be translocated and aspects to be considered when devising novel N1-based therapeutic approaches against neurodegenerative diseases.


Assuntos
Hipocampo/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Proteínas PrPC/genética , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Proteínas PrPC/metabolismo
10.
Mol Cell Neurosci ; 102: 103420, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805346

RESUMO

Neuroserpin is a serine protease inhibitor of the nervous system required for normal synaptic plasticity and regulating cognitive, emotional and social behavior in mice. The high expression level of neuroserpin detected at late stages of nervous system formation in most regions of the brain points to a function in neurodevelopment. In order to evaluate the contribution of neuroserpin to brain development, we investigated developmental neurogenesis and neuronal differentiation in the hippocampus of neuroserpin-deficient mice. Moreover, synaptic reorganization and composition of perineuronal net were studied during maturation and stabilization of hippocampal circuits. We showed that absence of neuroserpin results in early termination of neuronal precursor proliferation and premature neuronal differentiation in the first postnatal weeks. Additionally, at the end of the critical period neuroserpin-deficient mice had changed morphology of dendritic spines towards a more mature phenotype. This was accompanied by increased protein levels and reduced proteolytic cleavage of aggrecan, a perineuronal net core protein. These data suggest a role for neuroserpin in coordinating generation and maturation of the hippocampus, which is essential for establishment of an appropriate neuronal network.


Assuntos
Espinhas Dendríticas/metabolismo , Neurogênese , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Cultivadas , Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neuropeptídeos/genética , Serpinas/genética , Neuroserpina
11.
Learn Mem ; 24(12): 650-659, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29142062

RESUMO

The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses. In fact, studies in cell culture and mice point to a role for neuroserpin in dendritic branching, spine morphology, and modulation of behavior. In this study, we investigated the physiological role of neuroserpin in the regulation of synaptic density, synaptic plasticity, and behavior in neuroserpin-deficient mice. In the absence of neuroserpin, mice show a significant decrease in spine-synapse density in the CA1 region of the hippocampus, while expression of the key postsynaptic scaffold protein PSD-95 is increased in this region. Neuroserpin-deficient mice show decreased synaptic potentiation, as indicated by reduced long-term potentiation (LTP), whereas presynaptic paired-pulse facilitation (PPF) is unaffected. Consistent with altered synaptic plasticity, neuroserpin-deficient mice exhibit cognitive and sociability deficits in behavioral assays. However, although synaptic dysfunction is implicated in neuropsychiatric disorders, we do not detect alterations in expression of neuroserpin in fusiform gyrus of autism patients or in dorsolateral prefrontal cortex of schizophrenia patients. Our results identify neuroserpin as a modulator of synaptic plasticity, and point to a role for neuroserpin in learning and memory.


Assuntos
Regulação da Expressão Gênica/genética , Plasticidade Neuronal/genética , Neuropeptídeos/deficiência , Inibidores de Serina Proteinase/metabolismo , Serpinas/deficiência , Comportamento Social , Sinapses/genética , Adolescente , Adulto , Animais , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno Autístico/psicologia , Criança , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Humanos , Potenciação de Longa Duração/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neuropeptídeos/genética , Serpinas/genética , Sinapses/fisiologia , Sinapses/ultraestrutura , Proteína 25 Associada a Sinaptossoma/metabolismo , Adulto Jovem , Neuroserpina
12.
J Neuropathol Exp Neurol ; 75(2): 121-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26733586

RESUMO

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare disease characterized by the deposition of multiple intracytoplasmic neuronal inclusions that contain mutated neuroserpin. Tg-Syracuse (Tg-Syr) mice express Ser49Pro mutated neuroserpin and develop clinical and neuropathological features of human FENIB. We used 8-, 34-, 45- and 80-week-old Tg-Syr mice to characterize neuroinflammation and the unfolded protein response (UPR) in a neurodegenerative disease in which abnormal protein aggregates accumulate within the endoplasmic reticulum (ER). There were scattered neuroserpin inclusions in Tg-Syr mice at 8 weeks of age; the numbers of neurons involved and the amount of neuroserpin per neuron increased with age throughout the CNS to 80 weeks of age; no similar inclusions were found in wild type (Tg-WT) mice at any age. Increases in numbers of astrocytes and microglia occurred at advanced disease stages. Among 22 markers in 80-week-old Tg-Syr mice, only II1b and II10rb mRNAs in the somatosensory cortex and CxCl10 and Il10rb mRNAs in the olfactory bulb were upregulated when compared with Tg-WT mice indicating a limited relationship between neuroserpin inclusions and inflammatory responses. The changes were accompanied by a transient increase in expression of Xbp1 spliced at 45 weeks and increased ERdJ4 mRNAs at 80 weeks. The sequestration of UPR activators GRP78 and GRP94 in neuroserpin inclusions might explain the limited UPR responses despite the accumulation of neuroserpin in the ER in this FENIB mouse model.


Assuntos
Epilepsias Mioclônicas/genética , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Inflamação/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Serpinas/genética , Serpinas/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Astrócitos/patologia , Citocinas/biossíntese , Citocinas/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Epilepsias Mioclônicas/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microglia/patologia , Mutação , Bulbo Olfatório/patologia , RNA/biossíntese , RNA/isolamento & purificação , Fixação de Tecidos , Neuroserpina
13.
Neurobiol Aging ; 35(10): 2394-403, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24795221

RESUMO

A feature of neurodegenerative diseases is the intraneuronal accumulation of misfolded proteins. In familial encephalopathy with neuroserpin inclusion bodies (FENIB), mutations in neuroserpin lead to accumulation of neuroserpin polymers within the endoplasmic reticulum (ER) of neurons. Cell culture based studies have shown that ER-associated degradation (ERAD) is involved in clearance of mutant neuroserpin. Here, we investigate how mutant neuroserpin is delivered to ERAD using cell culture and a murine model of FENIB. We show that the ER-lectin OS-9 but not XTP3-B is involved in ERAD of mutant neuroserpin. OS-9 binds mutant neuroserpin and the removal of glycosylation sites leads to increased neuroserpin protein load whereas overexpression of OS-9 decreases mutant neuroserpin. In FENIB mice, OS-9 but not XTP3-B is differently expressed and impairment of ERAD by partial inhibition of the ubiquitin proteasome system leads to increased neuroserpin protein load. These findings show that OS-9 delivers mutant neuroserpin to ERAD by recognition of glycan side chains and provide the first in vivo proof of involvement of ERAD in degradation of mutant neuroserpin.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Epilepsias Mioclônicas/genética , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Lectinas/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Serpinas/genética , Serpinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático , Epilepsias Mioclônicas/metabolismo , Glicosilação , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Camundongos Transgênicos , Polissacarídeos/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Transporte Proteico , Proteólise , Ubiquitina , Neuroserpina
14.
Invest Ophthalmol Vis Sci ; 54(10): 6952-9, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24084090

RESUMO

PURPOSE: Mutations in the CLN6 gene cause variant late-infantile neuronal ceroid lipofuscinosis, a lysosomal storage disorder clinically characterized by progressive loss of vision, dementia, seizures, and early death. Here, we analyzed the time course of photoreceptor loss and the role of lysosomes in nclf mice, an animal model of the human CLN6 disease. METHODS: Labeling of apoptotic cells, activated astrocytes, and Müller cells, and expression analyses of glial fibrillary acidic protein, rhodopsin, and lysosomal proteins were performed on nclf mice during the course of retinal degeneration. In addition, the distribution and variability of storage material was examined at the ultrastructural level. RESULTS: Progressive apoptotic loss of photoreceptor cells was observed in nclf mice, resulting in reduction of the outer nuclear layer to approximately 3 rows of photoreceptor cells at 9 months of age. Onset of reactive gliosis was observed in 1-month-old nclf mice. Ultrastructural analysis revealed lysosomal storage material containing curvilinear and fingerprint-like inclusions in various retinal cell types. Expression levels of soluble mannose 6-phosphate-containing lysosomal enzymes, such as cathepsin D and the lysosomal membrane protein Lamp1, were increased in retinal cells of nclf mice. CONCLUSIONS: Accumulation of heterogeneous nondegraded macromolecules in dysfunctional lysosomes and autolysosomes impairs photoreceptor cells, ultimately leading to early-onset apoptotic death with subsequent activation of astrocytes and Müller cells in the retina of nclf mice. The defined steps of photoreceptor degeneration suggest that nclf mice might serve as an ideal animal model for experimental therapeutic approaches aimed at attenuating vision loss in neuronal ceroid lipofuscinosis.


Assuntos
Lipofuscinoses Ceroides Neuronais , Células Fotorreceptoras , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Lisossomos/metabolismo , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Fatores de Tempo
15.
Biochem J ; 453(1): 83-100, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23560819

RESUMO

The serine peptidase neurotrypsin is stored in presynaptic nerve endings and secreted in an inactive zymogenic form by synaptic activity. After activation, which requires activity of postsynaptic NMDA (N-methyl-D-aspartate) receptors, neurotrypsin cleaves the heparan sulfate proteoglycan agrin at active synapses. The resulting C-terminal 22-kDa fragment of agrin induces dendritic filopodia, which are considered to be precursors of new synapses. In the present study, we investigated the role of GAGs (glycosaminoglycans) in the activation of neurotrypsin and neurotrypsin-dependent agrin cleavage. We found binding of neurotrypsin to the GAG side chains of agrin, which in turn enhanced the activation of neurotrypsin by proprotein convertases and resulted in enhanced agrin cleavage. A similar enhancement of neurotrypsin binding to agrin, neurotrypsin activation and agrin cleavage was induced by the four-amino-acid insert at the y splice site of agrin, which is crucial for the formation of a heparin-binding site. Non-agrin GAGs also contributed to binding and activation of neurotrypsin and, thereby, to agrin cleavage, albeit to a lesser extent. Binding of neurotrypsin to cell-surface glycans locally restricts its conversion from zymogen into active peptidase. This provides the molecular foundation for the local action of neurotrypsin at or in the vicinity of its site of synaptic secretion. By its local action at synapses with correlated pre- and post-synaptic activity, the neurotrypsin-agrin system fulfils the requirements for a mechanism serving experience-dependent modification of activated synapses, which is essential for adaptive structural reorganizations of neuronal circuits in the developing and/or adult brain.


Assuntos
Agrina/metabolismo , Glicosaminoglicanos/farmacologia , Terminações Pré-Sinápticas/metabolismo , Serina Endopeptidases/metabolismo , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Ativação Enzimática , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Pró-Proteína Convertases/metabolismo , Sindecana-2/farmacologia
16.
PLoS One ; 7(4): e35493, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536393

RESUMO

Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease. Prominent autofluorescent and electron-dense lysosomal storage material was found in cerebellar Purkinje cells, thalamus, hippocampus, olfactory bulb and in cortical layer II to V. Another prominent early feature of nclf pathogenesis was the localized astrocytosis that was evident in many brain regions and the more widespread microgliosis. Expression analysis of mutant Cln6 found in nclf mice demonstrated synthesis of a truncated protein with a reduced half-life. Whereas the rapid degradation of the mutant Cln6 protein can be inhibited by proteasomal inhibitors, there was no evidence for ER stress or activation of the unfolded protein response in various brain areas during postnatal development. Age-dependent increases in LC3-II, ubiquitinated proteins, and neuronal p62-positive aggregates were observed, indicating a disruption of the autophagy-lysosome degradation pathway of proteins in brains of nclf mice, most likely due to defective fusion between autophagosomes and lysosomes. These data suggest that proteasomal degradation of mutant Cln6 is sufficient to prevent the accumulation of misfolded Cln6 protein, whereas lysosomal dysfunction impairs constitutive autophagy promoting neurodegeneration.


Assuntos
Autofagia , Lisossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Atrofia , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutagênese Insercional , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Bulbo Olfatório/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Proteínas Ubiquitinadas/metabolismo , Resposta a Proteínas não Dobradas
17.
J Neurosci Res ; 90(3): 568-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22012656

RESUMO

Mutations in the CLN6 gene cause a variant form of late infantile neuronal ceroid lipofuscinosis, a relentless neurodegenerative disease that is inherited as an autosomal recessive trait in humans and in the naturally occurring nclf mouse strain. The CLN6 protein is localized in the endoplasmic reticulum, but it has an unknown function. To develop a molecular understanding of neurodegeneration induced by mutations in CLN6, we examined the spatial and temporal distribution of Cln6 mRNA expression in murine brain. By using Northern blot and tissue qPCR array techniques, a single Cln6 transcript was detected throughout the adult brain, with greatest expression in the cerebellum and hypothalamus. Real-time qPCR showed 2.4-4-fold increases in Cln6 mRNA levels in the cortex and cerebellum during the first 28 days of life, with less prominent enhancement of expression in the hippocampus. In situ hybridization analyses demonstrated Cln6 expression in brainstem, dentate gyrus, and hippocampal neurons of newborn P0 mice. From P14 onward, Cln6 expression is widely distributed throughout the brain and is most prominent in cells of cortical layers II-VI, the Purkinje cell layer, dentate gyrus, and hippocampal CA1 region of adult mice. In different regions of the brain in P0 and P28 nclf mice, the Cln6 mRNA abundance was reduced by 30-40% compared with control mice. These findings implicate Cln6 in the survival and maturation of specific neuronal populations during development and make it possible to compare regional Cln6 expression with the distribution of subsequent pathology.


Assuntos
Região CA1 Hipocampal/metabolismo , Córtex Cerebral/metabolismo , Giro Denteado/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Fatores Etários , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Células de Purkinje/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Am J Pathol ; 177(1): 240-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20472886

RESUMO

Newly synthesized soluble lysosomal hydrolases require mannose 6-phosphate (Man6P) residues on their oligosaccharides for their transport to lysosomes. The formation of Man6P residues is catalyzed by the GlcNAc-1-phosphotransferase, which is defective in the lysosomal storage disorders mucolipidosis type II (ML II) and ML III. Both hypersecretion and reduced intracellular level of lysosomal enzymes as well as direct sequencing of GlcNAc-1-phosphotransferase genes are important diagnostic markers for ML II and ML III. A high-affinity Man6P-specific single-chain antibody fragment was generated, allowing the rapid indirect demonstration of defective GlcNAc-1-phosphotransferase. In media and extracts of cultured fibroblasts of healthy controls but not of ML II and ML III patients, several Man6P-containing proteins could be detected by anti-Man6P Western blotting. Immunoprecipitation of Man6P-containing proteins from conditioned media or mouse brain extracts followed by arylsulfatase A and cathepsin D Western blotting confirmed the specificity of the antibody fragment for lysosomal proteins. Application of the antibody fragment in immunohistochemistry of human brain slices from nonaffected patients showed strong neuronal immunoreactivity, which was not observed in cortical sections of an ML II patient. Finally, in brain extracts of a novel GlcNAc-1-phosphotransferase knock-in mouse no Man6P-containing proteins were detectable. Thus, the single-chain antibody fragment against Man6P was demonstrated to allow the specific, rapid, and convenient detection of Man6P-containing proteins and facilitates the diagnosis of ML II and ML III.


Assuntos
Fragmentos de Imunoglobulinas/metabolismo , Manosefosfatos/metabolismo , Mucolipidoses/diagnóstico , Proteínas/química , Anticorpos de Cadeia Única/metabolismo , Animais , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Técnicas de Introdução de Genes , Humanos , Fragmentos de Imunoglobulinas/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Mucolipidoses/enzimologia , Anticorpos de Cadeia Única/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
19.
Hum Mutat ; 31(2): E1163-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20020536

RESUMO

One variant form of late infantile neuronal ceroid lipofuscinosis is an autosomal recessive inherited neurodegenerative lysosomal storage disorder caused by mutations in the CLN6gene. The function of the polytopic CLN6 membrane protein localized in the endoplasmic reticulum is unknown. Here we report on expression studies of three mutations (c.368G>A, c.460-462delATC, c.316insC) found in CLN6 patients predicted to affect transmembrane domain 3 (p.Gly123Asp), cytoplasmic loop 2 (p.Ile154del) or result in a truncated membrane protein (p.Arg106ProfsX26), respectively. The rate of synthesis and the stability of the mutant CLN6 proteins are reduced in a mutation-dependent manner. None of the mutations prevented the dimerization of the CLN6 polypeptides. The particularly rapid degradation of the p.Arg106ProfsX26 mutant which is identical with the mutation in the murine orthologue Cln6 gene in the nclf mouse model of the disease, can be strongly inhibited by proteasomal and partially by lysosomal protease inhibitors. Both degradative pathways seem to be sufficient to prevent the accumulation/aggregation of the mutant CLN6 polypeptides in the endoplasmic reticulum.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Processamento de Proteína Pós-Traducional , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Meia-Vida , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
20.
Am J Pathol ; 170(4): 1305-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17392169

RESUMO

Intracellular protein deposition due to aggregation caused by conformational alteration is the hallmark of a number of neurodegenerative disorders, including Parkinson's disease, tauopathies, Huntington's disease, and familial encephalopathy with neuroserpin inclusion bodies. The latter is an autosomal dominant disorder caused by point mutations in neuroserpin resulting in its destabilization. Mutant neuroserpin polymerizes and forms intracellular aggregates that eventually lead to neurodegeneration. We generated genetically modified mice expressing the late-onset S49P-Syracuse or the early-onset S52R-Portland mutation of neuroserpin in central nervous system neurons. Mice exhibited morphological, biochemical, and clinical features resembling those found in the human disease. Analysis of brains revealed large intraneuronal inclusions composed exclusively of mutant neuroserpin, accumulating long before the development of clinical symptoms in a time-dependent manner. Clinical symptoms and amount of neuroserpin inclusions correlated with the predicted instability of the protein. The presence of inclusion bodies in subclinical mice indicates that in humans the prevalence of the disease could be higher than anticipated. In addition to shedding light on the pathophysiology of the human disorder, these mice provide an excellent model to study mechanisms of neurodegeneration or establish novel therapies for familial encephalopathy with neuroserpin inclusion bodies and other neurodegenerative diseases with intracellular protein deposition.


Assuntos
Encefalopatias/patologia , Corpos de Inclusão/patologia , Proteínas Mutantes/metabolismo , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Animais , Western Blotting , Encefalopatias/genética , Encefalopatias/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Feminino , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Neuropeptídeos/genética , Serpinas/genética , Neuroserpina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...