Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113774, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349791

RESUMO

Long interspersed nuclear element-1 (L1 or LINE-1) is a highly abundant mobile genetic element in both humans and mice, comprising almost 20% of each genome. L1s are silenced by several mechanisms, as their uncontrolled expression has the potential to induce genomic instability. However, L1s are paradoxically expressed at high levels in differentiating neural progenitor cells. Using in vitro and in vivo techniques to modulate L1 expression, we report that L1s play a critical role in both human and mouse brain development by regulating the rate of neural differentiation in a reverse-transcription-independent manner.


Assuntos
Instabilidade Genômica , Células-Tronco Neurais , Humanos , Animais , Camundongos , Diferenciação Celular , Elementos Nucleotídeos Longos e Dispersos
2.
Nat Biotechnol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418648

RESUMO

Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.

3.
Hippocampus ; 33(4): 412-423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811254

RESUMO

Immature dentate granule cells (DGCs) generated in the hippocampus during adulthood are believed to play a unique role in dentate gyrus (DG) function. Although immature DGCs have hyperexcitable membrane properties in vitro, the consequences of this hyperexcitability in vivo remain unclear. In particular, the relationship between experiences that activate the DG, such as exploration of a novel environment (NE), and downstream molecular processes that modify DG circuitry in response to cellular activation is unknown in this cell population. We first performed quantification of immediate early gene (IEG) proteins in immature (5-week-old) and mature (13-week-old) DGCs from mice exposed to a NE. Paradoxically, we observed lower IEG protein expression in hyperexcitable immature DGCs. We then isolated nuclei from active and inactive immature DGCs and performed single-nuclei RNA-Sequencing. Compared to mature nuclei collected from the same animal, immature DGC nuclei showed less activity-induced transcriptional change, even though they were classified as active based on expression of ARC protein. These results demonstrate that the coupling of spatial exploration, cellular activation, and transcriptional change differs between immature and mature DGCs, with blunted activity-induced changes in immature cells.


Assuntos
Giro Denteado , Neurônios , Camundongos , Animais , Giro Denteado/fisiologia , Neurônios/fisiologia , Hipocampo , Neurogênese/fisiologia
4.
Cell Stem Cell ; 26(2): 221-233.e6, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004479

RESUMO

The association between macrocephaly and autism spectrum disorder (ASD) suggests that the mechanisms underlying excessive neural growth could contribute to ASD pathogenesis. Consistently, neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) of ASD individuals with early developmental brain enlargement are inherently more proliferative than control NPCs. Here, we show that hiPSC-derived NPCs from ASD individuals with macrocephaly display an altered DNA replication program and increased DNA damage. When compared with the control NPCs, high-throughput genome-wide translocation sequencing (HTGTS) demonstrates that ASD-derived NPCs harbored elevated DNA double-strand breaks in replication stress-susceptible genes, some of which are associated with ASD pathogenesis. Our results provide a mechanism linking hyperproliferation of NPCs with the pathogenesis of ASD by disrupting long neural genes involved in cell-cell adhesion and migration.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/genética , Proliferação de Células , Instabilidade Genômica , Humanos
5.
Nat Commun ; 9(1): 3084, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082781

RESUMO

Activity-induced remodeling of neuronal circuits is critical for memory formation. This process relies in part on transcription, but neither the rate of activity nor baseline transcription is equal across neuronal cell types. In this study, we isolated mouse hippocampal populations with different activity levels and used single nucleus RNA-seq to compare their transcriptional responses to activation. One hour after novel environment exposure, sparsely active dentate granule (DG) neurons had a much stronger transcriptional response compared to more highly active CA1 pyramidal cells and vasoactive intestinal polypeptide (VIP) interneurons. Activity continued to impact transcription in DG neurons up to 5 h, with increased heterogeneity. By re-exposing the mice to the same environment, we identified a unique transcriptional signature that selects DG neurons for reactivation upon re-exposure to the same environment. These results link transcriptional heterogeneity to functional heterogeneity and identify a transcriptional correlate of memory encoding in individual DG neurons.


Assuntos
Giro Denteado/metabolismo , Regulação da Expressão Gênica , Memória , Neurônios/metabolismo , Transcrição Gênica , Animais , Região CA1 Hipocampal/citologia , Grânulos Citoplasmáticos , Feminino , Perfilação da Expressão Gênica , Interneurônios , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurogênese , Plasticidade Neuronal , Células Piramidais/metabolismo , Processos Estocásticos , Fatores de Tempo , Peptídeo Intestinal Vasoativo/metabolismo
6.
J Neurosci ; 29(43): 13532-42, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19864566

RESUMO

Adult-born dentate granule cells (DGCs) contribute to learning and memory, yet it remains unknown when adult-born DGCs become involved in the cognitive processes. During neurogenesis, immature DGCs display distinctive physiological characteristics while undergoing morphological maturation before final integration into the neural circuits. The survival and activity of the adult-born DGCs can be influenced by the experience of the animal during a critical period when newborn DGCs are still immature. To assess the temporal importance of adult neurogenesis, we developed a transgenic mouse model that allowed us to transiently reduce the numbers of adult-born DGCs in a temporally regulatable manner. We found that mice with a reduced population of adult-born DGCs at the immature stage were deficient in forming robust, long-term spatial memory and displayed impaired performance in extinction tasks. These results suggest that immature DGCs that undergo maturation make important contributions to learning and memory.


Assuntos
Células-Tronco Adultas/fisiologia , Encéfalo/fisiologia , Giro Denteado/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Animais , Condicionamento Clássico/fisiologia , Giro Denteado/citologia , Extinção Psicológica/fisiologia , Medo , Feminino , Proteínas de Filamentos Intermediários/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Testes Neuropsicológicos , Percepção Espacial/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...