Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(3): 587-601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146142

RESUMO

There is an increasing need for renewable energy sources to replace part of our fossil fuel-based economy and reduce greenhouse gas emission. Sugarcane bagasse is a prominent feedstock to produce cellulosic bioethanol, but strategies are still needed to improve the cost-effective exploitation of this potential energy source. In model plants, it has been shown that GUX genes are involved in cell wall hemicellulose decoration, adding glucuronic acid substitutions on the xylan backbone. Mutation of GUX genes increases enzyme access to cell wall polysaccharides, reducing biomass recalcitrance in Arabidopsis thaliana. Here, we characterized the sugarcane GUX genes and silenced GUX2 in commercial hybrid sugarcane. The transgenic lines had no penalty in development under greenhouse conditions. The sugarcane GUX1 and GUX2 enzymes generated different patterns of xylan glucuronidation, suggesting they may differently influence the molecular interaction of xylan with cellulose and lignin. Studies using biomass without chemical or steam pretreatment showed that the cell wall polysaccharides, particularly xylan, were less recalcitrant in sugarcane with GUX2 silenced than in WT plants. Our findings suggest that manipulation of GUX in sugarcane can reduce the costs of second-generation ethanol production and enhance the contribution of biofuels to lowering the emission of greenhouse gases.


Assuntos
Arabidopsis , Saccharum , Celulose/metabolismo , Xilanos/química , Biomassa , Polissacarídeos , Arabidopsis/genética , Plantas/metabolismo
2.
Genet Mol Biol ; 43(1): e20180208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32232316

RESUMO

Hemicellulose and cellulose are essential polysaccharides for plant development and major components of cell wall. They are also an important energy source for the production of ethanol from plant biomass, but their conversion to fermentable sugars is hindered by the complex structure of cell walls. The glucuronic acid substitution of xylan (GUX) enzymes attach glucuronic acid to xylan, a major component of hemicellulose, decreasing the efficiency of enzymes used for ethanol production. Since loss-of-function gux mutants of Arabidopsis thaliana enhance enzyme accessibility and cell wall digestion without adverse phenotypes, GUX genes are potential targets for genetically improving energy crops. However, comprehensive identification of GUX in important species and their evolutionary history are largely lacking. Here, we identified putative GUX proteins using hidden Markov model searches with the GT8 domain and a GUX-specific motif, and inferred the phylogenetic relationship of 18 species with Maximum likelihood and Bayesian approaches. Each species presented a variable number of GUX, and their evolution can be explained by a mixture of divergent, concerted and birth-and-death evolutionary models. This is the first broad insight into the evolution of GUX gene family in plants and will potentially guide genetic and functional studies in species used for biofuel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...