Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Cancer ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898604

RESUMO

Metastatic cutaneous melanoma is a fatal skin cancer. Resistance to targeted and immune therapies limits the benefits of current treatments. Identifying and adding anti-resistance agents to current treatment protocols can potentially improve clinical responses. Myocardin-related transcription factor (MRTF) is a transcriptional coactivator whose activity is indirectly regulated by actin and the Rho family of GTPases. We previously demonstrated that development of BRAF inhibitor (BRAFi) resistance frequently activates the Rho/MRTF pathway in human and mouse BRAFV600E melanomas. In clinical trials, pretreatment with BRAFi reduces the benefit of immune therapies. We aimed to test the efficacy of concurrent treatment with our MRTF pathway inhibitor CCG-257081 and anti-PD1 in vivo and to examine its effects on the melanoma immune microenvironment. Because MRTF pathway activation upregulates the expression of immune checkpoint inhibitor genes/proteins, we asked whether CCG-257081 can improve the response to immune checkpoint blockade. CCG-257081 reduced the expression of PDL1 in BRAFi-resistant melanoma cells and decreased surface PDL1 levels on both BRAFi-sensitive and -resistant melanoma cells. Using our recently described murine vemurafenib-resistant melanoma model, we found that CCG-257081, in combination with anti-PD1 immune therapy, reduced tumor growth and increased survival. Moreover, anti-PD1/CCG-257081 co-treatment increased infiltration of CD8+ T cells and B cells into the tumor microenvironment and reduced tumor-associated macrophages. Here, we propose CCG-257081 as an anti-resistance and immune therapy-enhancing anti-melanoma agent.

2.
Mol Cells ; 46(3): 176-186, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36994476

RESUMO

The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Carcinogênese/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Microambiente Tumoral
3.
RSC Med Chem ; 14(1): 74-84, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36760735

RESUMO

NRF2 is a transcription factor that controls the cellular response to various stressors, such as reactive oxygen and nitrogen species. As such, it plays a key role in the suppression of carcinogenesis, but constitutive NRF2 expression in cancer cells leads to resistance to chemotherapeutics and promotes metastasis. As a result, inhibition of the NRF2 pathway is a target for new drugs, especially for use in conjunction with established chemotherapeutic agents like carboplatin and 5-fluorouracil. A new class of NRF2 inhibitors has been discovered with substituted nicotinonitriles, such as MSU38225. In this work, the effects on NRF2 inhibition with structural changes were explored. Through these studies, we identified a few compounds with as good or better activity than the initial hit but with greatly improved solubility. The syntheses involved a variety of metal-catalyzed reactions, including titanium multicomponent coupling reactions and various Pd and Cu coupling reactions. In addition to inhibiting NRF2 activity, these new compounds inhibited the proliferation and migration of lung cancer cells in which the NRF2 pathway is constitutively activated.

4.
Front Oncol ; 12: 766794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444937

RESUMO

Single agent and combination therapy with BRAFV600E/K and MEK inhibitors have remarkable efficacy against melanoma tumors with activating BRAF mutations, but in most cases BRAF inhibitor (BRAFi) resistance eventually develops. One resistance mechanism is reactivation of the ERK pathway. However, only about half of BRAFi resistance is due to ERK reactivation. The purpose of this study is to uncover pharmacological vulnerabilities of BRAFi-resistant melanoma cells, with the goal of identifying new therapeutic options for patients whose tumors have developed resistance to BRAFi/MEKi therapy. We screened a well-annotated compound library against a panel of isogenic pairs of parental and BRAFi-resistant melanoma cell lines to identify classes of compounds that selectively target BRAFi-resistant cells over their BRAFi-sensitive counterparts. Two distinct patterns of increased sensitivity to classes of pharmacological inhibitors emerged. In two cell line pairs, BRAFi resistance conferred increased sensitivity to compounds that share the property of cell cycle arrest at M-phase, including inhibitors of aurora kinase (AURK), polo-like kinase (PLK), tubulin, and kinesin. Live cell microscopy, used to track mitosis in real time, revealed that parental but not BRAFi-resistant melanoma cells were able to exit from compound-induced mitotic arrest through mitotic slippage, thus escaping death. Consistent with the key role of Cyclin B1 levels in regulating mitosis at the spindle checkpoint in arrested cells, we found lower Cyclin B1 levels in parental compared with BRAFi-resistant melanoma cells, suggesting that inability to down-regulate Cyclin B1 expression levels may explain the increased vulnerability of resistant cells to mitotic inhibitors. Another BRAFi-resistant cell line showed increased sensitivity to Chk1/2 inhibitors, which was associated with an accumulation of DNA damage, resulting in mitotic failure. This study demonstrates that BRAFi-resistance, in at least a subset of melanoma cells, confers vulnerability to pharmacological disruption of mitosis and suggests a targeted synthetic lethal approach for overcoming resistance to BRAF/MEK-directed therapies.

5.
Mol Pharmacol ; 101(1): 1-12, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732527

RESUMO

Most B-Raf proto-oncogene (BRAF)-mutant melanoma tumors respond initially to BRAF inhibitor (BRAFi)/mitogen-activated protein kinase kinase 1 inhibitor (MEKi) therapy, although few patients have durable long-term responses to these agents. The goal of this study was to use an unbiased computational approach to identify inhibitors that reverse an experimentally derived BRAFi resistance gene expression signature. Using this approach, we found that ibrutinib effectively reverses this signature, and we demonstrate experimentally that ibrutinib resensitizes a subset of BRAFi-resistant melanoma cells to vemurafenib. Ibrutinib is used clinically as an inhibitor of the Src family kinase Bruton tyrosine kinase (BTK); however, neither BTK deletion nor treatment with acalabrutinib, another BTK inhibitor with reduced off-target activity, resensitized cells to vemurafenib. These data suggest that ibrutinib acts through a BTK-independent mechanism in vemurafenib resensitization. To better understand this mechanism, we analyzed the transcriptional profile of ibrutinib-treated BRAFi-resistant melanoma cells and found that the transcriptional profile of ibrutinib was highly similar to that of multiple Src proto-oncogene kinase inhibitors. Since ibrutinib, but not acalabrutinib, has appreciable off-target activity against multiple Src family kinases, it suggests that ibrutinib may be acting through this mechanism. Furthermore, genes that are differentially expressed in ibrutinib-treated cells are enriched in Yes1-associated transcriptional regulator (YAP1) target genes, and we showed that ibrutinib, but not acalabrutinib, reduces YAP1 activity in BRAFi-resistant melanoma cells. Taken together, these data suggest that ibrutinib, or other Src family kinase inhibitors, may be useful for treating some BRAFi/MEKi-refractory melanoma tumors. SIGNIFICANCE STATEMENT: MAPK-targeted therapies provide dramatic initial responses, but resistance develops rapidly; a subset of these tumors may be rendered sensitive again by treatment with an approved Src family kinase inhibitor-ibrutinub-potentially providing improved clinical outcomes.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas de Sinalização YAP/metabolismo , Adenina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Vemurafenib/farmacologia , Proteínas de Sinalização YAP/antagonistas & inibidores
6.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33921974

RESUMO

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.

7.
Biochem Pharmacol ; 182: 114259, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33011162

RESUMO

Acquired resistance to doxorubicin is a major hurdle in triple-negative breast cancer (TNBC) therapy, emphasizing the need to identify improved strategies. Apigenin and other structurally related dietary flavones are emerging as potential chemo-sensitizers, but their effect on three-dimensional TNBC spheroid models has not been investigated. We previously showed that apigenin associates with heterogeneous ribonuclear protein A2/B1 (hnRNPA2), an RNA-binding protein involved in mRNA and co-transcriptional regulation. However, the role of hnRNPA2 in apigenin chemo-sensitizing activity has not been investigated. Here, we show that apigenin induced apoptosis in TNBC spheroids more effectively than apigenin-glycoside, owing to higher cellular uptake. Moreover, apigenin inhibited the growth of TNBC patient-derived organoids at an in vivo achievable concentration. Apigenin sensitized spheroids to doxorubicin-induced DNA damage, triggering caspase-9-mediated intrinsic apoptotic pathway and caspase-3 activity. Silencing of hnRNPA2 decreased apigenin-induced sensitization to doxorubicin in spheroids by diminishing apoptosis and partly abrogated apigenin-mediated reduction of ABCC4 and ABCG2 efflux transporters. Together these findings provide novel insights into the critical role of hnRNPA2 in mediating apigenin-induced sensitization of TNBC spheroids to doxorubicin by increasing the expression of efflux transporters and apoptosis, underscoring the relevance of using dietary compounds as a chemotherapeutic adjuvant.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Apigenina/metabolismo , Doxorrubicina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/deficiência , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/metabolismo , Apigenina/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Pharmacol Ther ; 207: 107457, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863814

RESUMO

Dysregulation of intracellular signaling pathways is a key attribute of diseases associated with chronic inflammation, including cancer. Mitogen activated protein kinases have emerged as critical conduits of intracellular signal transmission, yet due to their ubiquitous roles in cellular processes, their direct inhibition may lead to undesired effects, thus limiting their usefulness as therapeutic targets. Mixed lineage kinases (MLKs) are mitogen-activated protein kinase kinase kinases (MAP3Ks) that interact with scaffolding proteins and function upstream of p38, JNK, ERK, and NF-kappaB to mediate diverse cellular signals. Studies involving gene silencing, genetically engineered mouse models, and small molecule inhibitors suggest that MLKs are critical in tumor progression as well as in inflammatory processes. Recent advances indicate that they may be useful targets in some types of cancer and in diseases driven by chronic inflammation including neurodegenerative diseases and metabolic diseases such as nonalcoholic steatohepatitis. This review describes existing MLK inhibitors, the roles of MLKs in various aspects of tumor progression and in the control of inflammatory processes, and the potential for therapeutic targeting of MLKs.


Assuntos
Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Humanos , Inflamação/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
9.
Sci Rep ; 9(1): 10718, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341204

RESUMO

In prior work we demonstrated that loss of E2F transcription factors inhibits metastasis. Here we address the mechanisms for this phenotype and identify the E2F regulated genes that coordinate tumor cell metastasis. Transcriptomic profiling of E2F1 knockout tumors identified a role for E2F1 as a master regulator of a suite of pro-metastatic genes, but also uncovered E2F1 target genes with an unknown role in pulmonary metastasis. High expression of one of these genes, Fgf13, is associated with early human breast cancer metastasis in a clinical dataset. Together these data led to the hypothesis that Fgf13 is critical for breast cancer metastasis, and that upregulation of Fgf13 may partially explain how E2F1 promotes breast cancer metastasis. To test this hypothesis we ablated Fgf13 via CRISPR. Deletion of Fgf13 in a MMTV-PyMT breast cancer cell line reduces colonization of the lungs in a tail vein injection. In addition, loss of Fgf13 reduced in vitro cell migration, suggesting that Fgf13 may be critical for tumor cells to escape the primary tumor and to colonize the distal sites. The significance of this work is twofold: we have both uncovered genomic features by which E2F1 regulates metastasis and we have identified new pro-metastatic functions for the E2F1 target gene Fgf13.


Assuntos
Movimento Celular , Fator de Transcrição E2F1/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Neoplasias Mamárias Experimentais/metabolismo , Animais , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Metástase Neoplásica
10.
Mol Cancer Res ; 15(8): 1085-1095, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487380

RESUMO

A hallmark of glioblastoma (GBM) tumors is their highly invasive behavior. Tumor dissemination into surrounding brain tissue is responsible for incomplete surgical resection, and subsequent tumor recurrence. Identification of targets that control GBM cell dissemination is critical for developing effective therapies to treat GBM. A majority of GBM tumors have dysregulated EGFR signaling, due most frequently to EGFR amplification or the presence of a constitutively active EGFRvIII mutant. Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that can activate multiple MAPK pathways. In this study, evidence is provided that MLK3 is essential for GBM cell migration and invasion, and that an MLK inhibitor blocks EGF-induced migration and invasion. MLK3 silencing or MLK inhibition blocks EGF-induced JNK activation, suggesting that MLK3-JNK signaling promotes invasion of GBM cells. Mechanistically, it is demonstrated that DOCK180, a RAC1 guanine nucleotide exchange factor (GEF) overexpressed in invasive GBM cells, activates the MLK3-JNK signaling axis in a RAC1-dependent manner. In summary, this investigation identifies an EGFR-DOCK180-RAC1-MLK3-JNK signaling axis that drives glioblastoma cell migration and dissemination.Implications: On the basis of these findings, MLK3 emerges as a potential therapeutic target for the treatment of glioblastoma. Mol Cancer Res; 15(8); 1085-95. ©2017 AACR.


Assuntos
Receptores ErbB/genética , Glioblastoma/genética , MAP Quinase Quinase Quinases/genética , Proteínas rac de Ligação ao GTP/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , MAP Quinase Quinase 4/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
11.
Cancers (Basel) ; 8(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213454

RESUMO

Mixed-lineage kinase 3 (MLK3) was first cloned in 1994; however, only in the past decade has MLK3 become recognized as a player in oncogenic signaling. MLK3 is a mitogen-activated protein kinase kinase kinase (MAP3K) that mediates signals from several cell surface receptors including receptor tyrosine kinases (RTKs), chemokine receptors, and cytokine receptors. Once activated, MLK3 transduces signals to multiple downstream pathways, primarily to c-Jun terminal kinase (JNK) MAPK, as well as to extracellular-signal-regulated kinase (ERK) MAPK, P38 MAPK, and NF-κB, resulting in both transcriptional and post-translational regulation of multiple effector proteins. In several types of cancer, MLK3 signaling is implicated in promoting cell proliferation, as well as driving cell migration, invasion and metastasis.

12.
PLoS One ; 8(8): e71258, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967175

RESUMO

Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO), are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER)-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864) and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Glândulas Mamárias Humanas/patologia , Receptores de GABA/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Apoptose/efeitos dos fármacos , Benzodiazepinonas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Indazóis/farmacologia , Isoquinolinas/farmacologia , Ligantes , Glândulas Mamárias Humanas/metabolismo , Invasividade Neoplásica
13.
Oncotarget ; 4(8): 1158-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23902710

RESUMO

Estrogen receptor (ER)-positive tumors represent the most common type of breast cancer, and ER-targeted therapies such as antiestrogens and aromatase inhibitors have therefore been widely used in breast cancer treatment. While many patients have benefited from these therapies, both innate and acquired resistance continue to be causes of treatment failure. Novel targeted therapeutics that could be used alone or in combination with endocrine agents to treat resistant tumors or to prevent their development are therefore needed. In this report, we examined the effects of inhibiting mixed-lineage kinase (MLK) activity on ER-positive breast cancer cells and non-tumorigenic mammary epithelial cells. Inhibition of MLK activity with the pan-MLK inhibitor CEP-1347 blocked cell cycle progression in G2 and early M phase, and induced apoptosis in three ER-positive breast cancer cell lines, including one with acquired antiestrogen resistance. In contrast, it had no effect on the cell cycle or apoptosis in two non-tumorigenic mammary epithelial cell lines. CEP-1347 treatment did not decrease the level of active ERK or p38 in any of the cell lines tested. However, it resulted in decreased JNK and NF-κB activity in the breast cancer cell lines. A JNK inhibitor mimicked the effects of CEP-1347 in breast cancer cells, and overexpression of c-Jun rescued CEP-1347-induced Bax expression. These results indicate that proliferation and survival of ER-positive breast cancer cells are highly dependent on MLK activity, and suggest that MLK inhibitors may have therapeutic efficacy for ER-positive breast tumors, including ones that are resistant to current endocrine therapies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Estrogênio/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carbazóis/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Receptores de Estrogênio/biossíntese , Transfecção , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
14.
ISRN Oncol ; 2013: 385398, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844294

RESUMO

Introduction. Breast cancer recurrence can develop years after primary treatment. Crosstalk between breast cancer cells and their stromal microenvironment may influence tumor progression. Our primary study aim was to determine whether endothelin-1 (ET-1) expression in tumor and stroma predicts breast cancer relapse. The secondary aim was to determine ET-1/endothelin receptor A (ETAR) role on signaling pathways and apoptosis in breast cancer. Experimental Design. Patients with histologically documented stages I-III invasive breast cancer were included in the study. ET-1 expression by immunohistochemistry (IHC) in tumor cells and stroma was analyzed. Association between ET-1 expression and clinical outcome was assessed using multivariate Cox proportional hazard model. Kaplan-Meier curves were used to estimate disease-free survival (DFS). In addition, the effect of ET-1/ETAR on signaling pathways and apoptosis was evaluated in MCF-7 and MDA-MB-231 breast cancer cells. Results. With a median followup of 7 years, ET-1 non-enriched tumor phenotype had a significant association with favorable disease-free survival (HR = 0.16; 95% CI 0.03-0.77; P value <0.02). ER negativity, advanced stage of disease and ET-1-enriched tumor phenotype were all associated with a higher risk for recurrence. Experimental study demonstrated that ET-1 stimulation promoted Akt activation in MCF-7 and MDA-MB-231 cells. Furthermore, silencing of ETAR induced apoptosis in both hormone receptor negative and hormone receptor positive breast cancer cells. Conclusions. We found ET-1 expression in tumor and stroma to be an independent prognostic marker for breast cancer recurrence. Prospective studies are warranted to examine whether ET-1 expression in tumor/stroma could assist in stratifying patients with hormone receptor positive breast cancer for adjuvant therapy.

15.
Am J Physiol Gastrointest Liver Physiol ; 303(8): G951-60, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22917630

RESUMO

Mixed-lineage kinase 3 (MLK3) activates multiple MAPK pathways and can initiate apoptosis, proliferation, migration, or differentiation in different cell types. However, whether MLK3 signaling regulates intestinal epithelial cell sheet migration in vivo is not known. We sought to investigate whether MLK3 signaling is important in intestinal mucosal healing and epithelial cell motility in vivo and in vitro. In vivo, we compared the healing of jejunal mucosal ulcers induced in MLK3 knockout (KO) mice with healing in wild-type (WT) mice. Ulcer healing was 20.8% less at day 3 (P < 0.05) and 18.9% less at day 5 (P < 0.05) in MLK3 KO than WT mice. Within the intestinal mucosa of MLK3 KO mice, ERK and JNK signaling were reduced, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) level was increased, and p38 signaling was unchanged. Parallel in vitro studies using an MLK inhibitor assessed the role of MLK signaling in human Caco-2 intestinal epithelial migration across collagen substrates. The MLK inhibitor reduced closure of circular wounds in Caco-2 monolayers. MLK inhibition reduced ERK and JNK, but not p38, signaling in Caco-2 cells. Although PTEN is increased after MLK inhibition, it does not influence MLK-mediated cell migration. These findings indicate that disruption of MLK3 signaling impairs ulcer healing by suppressing ERK and JNK signaling in vitro and in mouse intestinal mucosa in vivo. These results reveal a novel role for MLK3 signaling in the regulation of intestinal epithelial migration in vivo and suggest that MLK3 may be an important target for the regulation of intestinal mucosal healing.


Assuntos
Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Úlcera/metabolismo , Cicatrização/fisiologia , Animais , Proliferação de Células , Células Epiteliais/metabolismo , Enteropatias/patologia , Mucosa Intestinal/patologia , Jejuno/metabolismo , Jejuno/patologia , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Knockout , Fosforilação , Úlcera/patologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
16.
Cancer Res ; 72(16): 4130-40, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22700880

RESUMO

MLK3 kinase activates multiple mitogen-activated protein kinases and plays a critical role in cancer cell migration and invasion. In the tumor microenvironment, prometastatic factors drive breast cancer invasion and metastasis, but their associated signaling pathways are not well-known. Here, we provide evidence that MLK3 is required for chemokine (CXCL12)-induced invasion of basal breast cancer cells. We found that MLK3 induced robust phosphorylation of the focal adhesion scaffold paxillin on Ser 178 and Tyr 118, which was blocked by silencing or inhibition of MLK3-JNK. Silencing or inhibition of MLK3, inhibition of JNK, or expression of paxillin S178A all led to enhanced Rho activity, indicating that the MLK3-JNK-paxillin axis limits Rho activity to promote focal adhesion turnover and migration. Consistent with this, MLK3 silencing increased focal adhesions and stress fibers in breast cancer cells. MLK3 silencing also decreased the formation of breast cancer lung metastases in vivo, and breast cancer cells derived from mouse lung metastases showed enhanced Ser 178 paxillin phosphorylation. Taken together, our findings suggest that the MLK3-JNK-paxillin signaling axis may represent a potential therapeutic target and/or prognostic marker in breast cancer metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Paxilina/metabolismo , Animais , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosforilação , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
17.
Biochem J ; 427(3): 435-43, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20158498

RESUMO

MLK3 (mixed lineage kinase 3) is a MAP3K [MAPK (mitogen-activated protein kinase) kinase kinase] that activates multiple MAPK pathways, including the JNK (c-Jun N-terminal kinase) pathway. Immunoblotting of lysates from cells ectopically expressing active MLK3 revealed an additional immunoreactive band corresponding to a CTF (C-terminal fragment) of MLK3. In the present paper we provide evidence that MLK3 undergoes proteolysis to generate a stable CTF in response to different stimuli, including PMA and TNFalpha (tumour necrosis factor alpha). The cleavage site was deduced by Edman sequencing as between Gln251 and Pro252, which is within the kinase domain of MLK3. Based on our homology model of the kinase domain of MLK3, the region containing the cleavage site is predicted to reside on a flexible solvent-accessible loop. Site-directed mutagenesis studies revealed that Leu250 and Gln251 are required for recognition by the 'MLK3 protease', reminiscent of the substrate specificity of the coronavirus 3C and 3CL proteases. Whereas numerous mammalian protease inhibitors have no effect on MLK3 proteolysis, blockade of the proteasome through epoxomicin or MG132 abolishes PMA-induced production of the CTF of MLK3. This CTF is able to heterodimerize with full-length MLK3, and interact with the active form of the small GTPase Cdc42, resulting in diminished activation loop phosphorylation of MLK3 and reduced signalling to JNK. Thus this novel proteolytic processing of MLK3 may negatively control MLK3 signalling to JNK.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Western Blotting , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Imunoprecipitação , Leupeptinas/farmacologia , Mutagênese Sítio-Dirigida , Oligopeptídeos/farmacologia , Ésteres de Forbol/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
18.
Biochem J ; 424(1): e1-3, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19839940

RESUMO

Some 5 years ago, it was first discovered that mutations in the gene encoding LRRK2 (leucine-rich repeat protein kinase 2) are tightly linked with a subset of familial PD (Parkinson's disease). Before this genetic association, LRRK2 had never been investigated biochemically. Now it is of utmost importance to establish whether LRRK2 is a bona fide kinase in vitro and in vivo and to understand how mutations of LRRK2 lead to the specific loss of dopaminergic neurons in the substantia nigra to cause PD. In spite of tremendous efforts in the research community, there is no consensus with regard to the magnitude of the enzymatic activity of LRRK2 mutant forms that segregate with PD owing, in part, to the lack of a highly sensitive kinase assay system, and it is still unclear whether an abnormal increase in kinase activity is responsible for LRRK2-associated PD. As described in this issue of the Biochemical Journal, Nichols et al.. have developed an extensive set of molecular tools, including an optimized peptide substrate for determining in vitro kinase activity of LRRK2, a set of kinase inhibitors that can be used to explore LRRK2 substrate specificity and biology, a much-needed murine-specific antibody for immunoprecipation, and efficient gene-silencing approaches. In the present commentary, we discuss some of the components of this new LRRK2 biochemical toolbox and how they can be used to better understand this enigmatic kinase.


Assuntos
Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética
19.
J Biol Chem ; 281(28): 19134-44, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16687404

RESUMO

MLK3 (mixed lineage kinase 3) is a widely expressed, mammalian serine/threonine protein kinase that activates multiple MAPK pathways. Previously our laboratory used in vivo labeling/mass spectrometry to identify phosphorylation sites of activated MLK3. Seven of 11 identified sites correspond to the consensus motif for phosphorylation by proline-directed kinases. Based on these results, we hypothesized that JNK, or another proline-directed kinase, phosphorylates MLK3 as part of a feedback loop. Herein we provide evidence that MLK3 can be phosphorylated by JNK in vitro and in vivo. Blockade of JNK results in dephosphorylation of MLK3. The hypophosphorylated form of MLK3 is inactive and redistributes to a Triton-insoluble fraction. Recovery from JNK inhibition restores MLK3 solubility and activity, indicating that the redistribution process is reversible. This work describes a novel mode of regulation of MLK3, by which JNK-mediated feedback phosphorylation of MLK3 regulates its activation and deactivation states by cycling between Triton-soluble and Triton-insoluble forms.


Assuntos
Detergentes/farmacologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Octoxinol/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Fosforilação , Prolina/química , Coloração pela Prata , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
20.
Trends Neurosci ; 29(5): 286-93, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16616379

RESUMO

Parkinson's disease (PD) is the most common motor neurodegenerative disease. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have been linked recently with autosomal-dominant parkinsonism that is clinically indistinguishable from typical, idiopathic, late-onset PD. Thus, the protein LRRK2 has emerged as a promising therapeutic target for treatment of PD. LRRK2 is extraordinarily large and complex, with multiple enzymatic and protein-interaction domains, each of which is targeted by pathogenic mutations in familial PD. This review places the PD-associated mutations of LRRK2 in a structural and functional framework, with the ultimate aim of deciphering the molecular basis of LRRK2-associated pathogenesis. This, in turn, should advance our understanding and treatment of familial and idiopathic PD.


Assuntos
Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação/genética , Doença de Parkinson/enzimologia , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...