Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357922

RESUMO

Chronic and elevated levels of the antiviral cytokine IFN-α in the brain are neurotoxic. This is best observed in patients with genetic cerebral interferonopathies such as Aicardi-Goutières syndrome. Cerebral interferonopathies typically manifest in early childhood and lead to debilitating disease and premature death. There is no cure for these diseases with existing treatments largely aimed at managing symptoms. Thus, an effective therapeutic strategy is urgently needed. Here, we investigated the effect of antisense oligonucleotides targeting the murine IFN-α receptor (Ifnar1 ASOs) in a transgenic mouse model of cerebral interferonopathy. Intracerebroventricular injection of Ifnar1 ASOs into transgenic mice with brain-targeted chronic IFN-α production resulted in a blunted cerebral interferon signature, reduced neuroinflammation, restoration of blood-brain barrier integrity, absence of tissue destruction, and lessened neuronal damage. Remarkably, Ifnar1 ASO treatment was also effective when given after the onset of neuropathological changes, as it reversed such disease-related features. We conclude that ASOs targeting the IFN-α receptor halt and reverse progression of IFN-α-mediated neuroinflammation and neurotoxicity, opening what we believe to be a new and promising approach for the treatment of patients with cerebral interferonopathies.


Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Pré-Escolar , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Interferon-alfa/genética , Camundongos Transgênicos
2.
Proc Natl Acad Sci U S A ; 119(11): e2114476119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263225

RESUMO

SignificanceChandelier cells (ChCs) are a unique type of GABAergic interneuron that form axo-axonic synapses exclusively on the axon initial segment (AIS) of neocortical pyramidal neurons (PyNs), allowing them to exert powerful yet precise control over PyN firing and population output. The importance of proper ChC function is further underscored by the association of ChC connectivity defects with various neurological conditions. Despite this, the cellular mechanisms governing ChC axo-axonic synapse formation remain poorly understood. Here, we identify microglia as key regulators of ChC axonal morphogenesis and AIS synaptogenesis, and show that disease-induced aberrant microglial activation perturbs proper ChC synaptic development/connectivity in the neocortex. In doing so, such findings highlight the therapeutic potential of manipulating microglia to ensure proper brain wiring.


Assuntos
Segmento Inicial do Axônio , Neurônios GABAérgicos , Microglia , Células Piramidais , Sinapses , Animais , Segmento Inicial do Axônio/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/ultraestrutura , Camundongos , Microglia/fisiologia , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Sinapses/fisiologia
3.
Neuron ; 109(10): 1636-1656.e8, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33831348

RESUMO

Ample evidence indicates that individuals with intellectual disability (ID) are at increased risk of developing stress-related behavioral problems and mood disorders, yet a mechanistic explanation for such a link remains largely elusive. Here, we focused on characterizing the syndromic ID gene oligophrenin-1 (OPHN1). We find that Ophn1 deficiency in mice markedly enhances helpless/depressive-like behavior in the face of repeated/uncontrollable stress. Strikingly, Ophn1 deletion exclusively in parvalbumin (PV) interneurons in the prelimbic medial prefrontal cortex (PL-mPFC) is sufficient to induce helplessness. This behavioral phenotype is mediated by a diminished excitatory drive onto Ophn1-deficient PL-mPFC PV interneurons, leading to hyperactivity in this region. Importantly, suppressing neuronal activity or RhoA/Rho-kinase signaling in the PL-mPFC reverses helpless behavior. Our results identify OPHN1 as a critical regulator of adaptive behavioral responses to stress and shed light onto the mechanistic links among OPHN1 genetic deficits, mPFC circuit dysfunction, and abnormalities in stress-related behaviors.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/metabolismo , Animais , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Desamparo Aprendido , Humanos , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Transmissão Sináptica
4.
Trends Neurosci ; 43(8): 565-580, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32564887

RESUMO

Chandelier cells (ChCs) are a unique type of GABAergic interneuron that selectively innervate the axon initial segment (AIS) of excitatory pyramidal neurons; the subcellular domain where action potentials are initiated. The proper genesis and maturation of ChCs is critical for regulating neural ensemble firing in the neocortex throughout development and adulthood. Recently, genetic and molecular studies have shed new light on the complex innerworkings of ChCs in health and disease. This review presents an overview of recent studies on the developmental origins, migratory properties, and morphology of ChCs. In addition, attention is given to newly identified molecules regulating ChC morphogenesis and connectivity as well as recent work linking ChC dysfunction to neural disorders, including schizophrenia, epilepsy, and autism spectrum disorder (ASD).


Assuntos
Transtorno do Espectro Autista , Neocórtex , Adulto , Humanos , Interneurônios , Neurônios , Células Piramidais
5.
Neuron ; 102(2): 358-372.e9, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30846310

RESUMO

Among the diverse interneuron subtypes in the neocortex, chandelier cells (ChCs) are the only population that selectively innervate pyramidal neurons (PyNs) at their axon initial segment (AIS), the site of action potential initiation, allowing them to exert powerful control over PyN output. Yet, mechanisms underlying their subcellular innervation of PyN AISs are unknown. To identify molecular determinants of ChC/PyN AIS innervation, we performed an in vivo RNAi screen of PyN-expressed axonal cell adhesion molecules (CAMs) and select Ephs/ephrins. Strikingly, we found the L1 family member L1CAM to be the only molecule required for ChC/PyN AIS innervation. Further, we show that L1CAM is required during both the establishment and maintenance of innervation, and that selective innervation of PyN AISs by ChCs requires AIS anchoring of L1CAM by the cytoskeletal ankyrin-G/ßIV-spectrin complex. Thus, our findings identify PyN-expressed L1CAM as a critical CAM required for innervation of neocortical PyN AISs by ChCs. VIDEO ABSTRACT.


Assuntos
Axônios/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Células Piramidais/metabolismo , Animais , Anquirinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Efrinas/metabolismo , Camundongos , Neocórtex/citologia , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor EphA1/metabolismo , Espectrina/metabolismo , Sinapses
6.
J Cell Biol ; 216(12): 4313-4330, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29089377

RESUMO

Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Neurônios/metabolismo , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas rho de Ligação ao GTP/genética , Actinas/genética , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Embrião de Mamíferos , Proteínas Ativadoras de GTPase , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Neurônios/ultraestrutura , Cultura Primária de Células , Prosencéfalo/citologia , Prosencéfalo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...