Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 13(9): 4299-304, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23915079

RESUMO

Fully exploiting the capability of nano-optics to enhance light-matter interaction on the nanoscale is conditioned by bringing the nano-object to interrogate within the minuscule volume where the field is concentrated. There currently exists several approaches to control the immobilization of nano-objects but they all involve a cumbersome delivery step and require prior knowledge of the "hot spot" location. Herein, we present a novel technique in which the enhanced local field in the hot spot is the driving mechanism that triggers the binding of proteins via three-photon absorption. This way, we demonstrate exclusive immobilization of nanoscale amounts of bovine serum albumin molecules into the nanometer-sized gap of plasmonic dimers. The immobilized proteins can then act as a scaffold to subsequently attach an additional nanoscale object such as a molecule or a nanocrystal. This universal technique is envisioned to benefit a wide range of nano-optical functionalities including biosensing, enhanced spectroscopy like surface-enhanced Raman spectroscopy or surface-enhanced infrared absorption spectroscopy, as well as quantum optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...