Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Inform ; : e202300335, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864978

RESUMO

Natural products have long been an important source of inspiration for medicinal chemistry and drug discovery. In the cosmetic field, they remain the major elements of the composition and serve as marketing asset. Recent research showed the implication of salt-inducible kinases on the melanin production in skin via MITF regulation. Finding new potent modulators on such target could open the way to several cosmetic applications to attenuate visible signs of photoaging and improve the tan without sun. Since virtual screening can be a powerful tool for detecting hit compounds in the early stages of a drug discovery process, we applied this method on salt-inducible kinase 2 to discover potential interesting compounds. Here, we present the different steps from the construction of a database of natural products, to the validation of a docking protocol and the results of the virtual screening. Hits from the screening were tested in vitro to confirm their efficiency and results are discussed.

2.
J Chem Inf Model ; 61(11): 5458-5468, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669418

RESUMO

A new methodology for classifying fragment combinations and characterizing pseudonatural products (PNPs) is described. The source code is based on open-source tools and is organized as a Python package. Tasks can be executed individually or within the context of scalable, robust workflows. First, structures are standardized and duplicate entries are filtered out. Then, molecules are probed for the presence of predefined fragments. For molecules with more than one match, fragment combinations are classified. The algorithm considers the pairwise relative position of fragments within the molecule (fused atoms, linkers, intermediary rings), resulting in 18 different possible fragment combination categories. Finally, all combinations for a given molecule are assembled into a fragment combination graph, with fragments as nodes and combination types as edges. This workflow was applied to characterize PNPs in the ChEMBL database via comparison of fragment combination graphs with natural product (NP) references, represented by the Dictionary of Natural Products. The Murcko fragments extracted from 2000 structures previously described were used to define NP fragments. The results indicate that ca. 23% of the biologically relevant compounds listed in ChEMBL comply to the PNP definition and that, therefore, PNPs occur frequently among known biologically relevant small molecules. The majority (>95%) of PNPs contain two to four fragments, mainly (>95%) distributed in five different combination types. These findings may provide guidance for the design of new PNPs.


Assuntos
Produtos Biológicos , Bibliotecas de Moléculas Pequenas , Algoritmos , Bases de Dados Factuais , Software
3.
Nat Commun ; 12(1): 1883, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767198

RESUMO

Natural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/síntese química , Descoberta de Drogas/métodos , Quimioinformática , Cromonas/química , Griseofulvina/química , Indóis/química , Morfinanos/química , Quinidina/química , Quinina/química , Bibliotecas de Moléculas Pequenas/química
4.
Curr Med Chem ; 27(38): 6480-6494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31242833

RESUMO

Drug discovery is a challenging and expensive field. Hence, novel in silico tools have been developed in early discovery stage to identify and prioritize novel molecules with suitable physicochemical properties. In many in silico drug design projects, molecular databases are screened by virtual screening tools to search for potential bioactive molecules. The preparation of the molecules is therefore a key step in the success of well-established techniques such as docking, similarity or pharmacophore searching. We review here the lists of several toolkits used in different steps during the cleaning of molecular databases, integrated within a KNIME workflow. During the first step of the automatic workflow, salts are removed, and mixtures are split to get one compound per entry. Then compounds with unwanted features are filtered. Duplicated entries are then deleted while considering stereochemistry. As a compromise between exhaustiveness and computational time, most distributed tautomers at physiological pH are computed. Additionally, various flags are applied to molecules by using either classical molecular descriptors, similarity search to known libraries or substructure search rules. Moreover, stereoisomers are enumerated depending on the unassigned chiral centers. Then, three-dimensional coordinates, and optionally conformers, are generated. This workflow has been already applied to several drug design projects and can be used for molecular database preparation upon request.


Assuntos
Bases de Dados de Compostos Químicos , Descoberta de Drogas , Simulação por Computador , Desenho de Fármacos , Fluxo de Trabalho
5.
Mol Inform ; 36(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28586180

RESUMO

Over the past decades, virtual screening has proved itself to be a valuable asset to identify new bioactive compounds. The vast majority of commonly used techniques can be described in three steps: pre-processing the dataset i. e. small (ligands) and eventually larger (receptors) molecules, execute the method and finally analyse the results. Hence, the preparation of ligands is a critical step for success of commonly used virtual screening approaches such as protein-ligand docking, similarity or pharmacophore search. We present here a new workflow, VSPrep, for the pre-processing of small molecules; it is based on freely accessible tools for academics and is integrated within the KNIME platform. It can be used to perform several chemoinformatics tasks such as molecular database cleaning, tautomer and stereoisomer enumeration, focused library design and conformer generation. Additionally, graphical reports of the results are provided to the user as a convenient analysis tool.


Assuntos
Bases de Dados de Compostos Químicos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas , Interface Usuário-Computador , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...