Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473475

RESUMO

It is believed that the use of mortars based on air lime in the construction and renovation of brick buildings has a number of advantages, especially those closely related to the durability and strength of the structure. However, there is still a noticeable difference in the mechanical properties of these materials. This research investigated the mechanical characteristics of a mixed cement-lime mortar with the two most popular proportions of an air lime, cement, and sand mix: 1:1:6 and 1:2:9 (by volume). Mechanical tests were performed on standard and non-standard samples to assess compressive strength, tensile strength, flexural strength, and fracture energy. The obtained results indicate the possibility of using these mixtures in modern masonry construction, as well as in the aspect of sustainable development. Additionally, lime mortar with a higher lime content can be used in non-load-bearing walls and in renovation and repair works.

2.
Materials (Basel) ; 16(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984051

RESUMO

In the present study, experimental investigations on the influence of mixing water content used for the preparation of mortar mix using factory-made dry-mix mortar dedicated to bricklaying with clinker masonry units are presented, as well as the curing time on flexural bond strength of masonry made of these two materials. The flexural bond strength was tested using the "wrench test" method. The masonry tests specimens were prepared using three volumes of mixing water as follows: 4.0 L (the value recommended by the mortar manufacturer); 4.5 L; and 5 L of tap water per one 25 kg bag of dry pre-mixed mortar. The influence of the mixing water content was analyzed in relation to curing time. All masonry specimens were tested in four series after 9, 14, 21, and 28 days of sample curing. The results showed that the use of 6 and 18% more mixing water than recommended by the manufacturer (4.5 and 5 L per bag) adversely affected flexural bond strength. Moreover, for all three mixing water amounts, it was found that the maximum values of bonding strength were reached after 9 days of curing, which decreased over time. The largest decreases (30-40%) were recorded after 14 days. After 21 days, these values continued to decrease, but more slowly. The final value of the ratio of bond strength to flexural strength of the mortar was similar for all amounts of mixing water and for the 28-day curing time, it oscillated around 0.2.

3.
Materials (Basel) ; 15(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009494

RESUMO

The article presents laboratory tests on the impact of the mixing water content used in the preparation of fresh mortar on the flexural and compressive strength of one of the dry-mix mortars produced by a leading European producer and dedicated to bricklaying with clinker elements. The development of these parameters in relation to curing time was also analyzed. The mortar samples were prepared from a factory-made mortar mix using 4.0 L (the value recommended by the mortar manufacturer), 4.5 L, and 5 L of water per 25 kg bag of ready-made, pre-mixed dry mortar mix. All samples were tested in five series after 5, 9, 14, 21, and 28 days of sample curing. The results of these tests showed that the use of 6 and 18% more mixing water than recommended by the manufacturer (4.5 and 5 L per bag) adversely affected the basic mechanical parameters of the tested mortar. Moreover, it was found that the highest compressive strength values were obtained after 21 days of curing and not after 28 days as usual. It was also found that hardening time and higher than recommended water content adversely affected the bending strength of the mortar.

4.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932936

RESUMO

This paper presents the development of a numerical model aimed at the simulation of nonlinear behaviour of traditional joints between walls made of autoclaved aerated concrete (AAC) masonry units. Nonlinear behaviour and cracking of AAC and mortar were simulated using the concrete damaged plasticity (CDP) model available in the ABAQUS finite element software. The paper also presents and discusses the results of an experimental campaign involving testing six T-shaped, monosymmetric samples with traditional joints between walls loaded in shear. The results were used to validate the numerical model. The validation confirmed that the model is capable of producing accurate results and predicting the structural behaviour with a reasonably good accuracy in elastic and post-elastic stages. Furthermore, a sensitivity study was conducted, in which the variation of elastic modulus, Poisson's ratio, tensile strength, compression strength and fracture energy of AAC was investigated. Results showed that the variation of elastic modulus, tensile strength and fracture energy is most critical to the structural behaviour of the model, while variation of the remaining parameters has a negligible effect on the results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...