Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 240: 112117, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635196

RESUMO

A systematic study of the effect of phosphine and bis-phosphine ligands in the interaction of NiII, PdII, and PtII complexes with two classes of zinc fingers was performed. The Cys2His2, finger 3 of specific protein-1, and the Cys2HisCys C-terminal zinc finger of nucleocapsid protein 7 of the HIV-1 were used as models of the respective class. In general, phosphine ligands favor the metal binding to the peptide, although the bis-phosphine ligands produce more specific binding than the monodentate. In the case of nickel complexes, the interaction of NiII ions with the sequence SKH, present in Cys2His2, results in hydrolysis, contrasting to the preferred zinc ejection produced by the NiII complexes with chelating phosphines, producing Ni(bis-phosphine) fingers. In the absence of the SKH sequence, zinc ejection is observed with the formation of nickel fingers, with reactivity dependent on the phosphine. On the other hand, Pd(phosphines) produces Pd2 fingers in the case of triphenylphosphine with the phosphine coordinated as intermediate species. The bis-phosphine ligands produce very clean spectra and a stable signal Pd(bis-phosphine)finger. Interestingly, phosphines produce very reactive platinum complexes, which eject zinc and promote peptide hydrolysis. The results reported here are relevant to the understanding of the mechanism of these interactions and how to modulate metallocompounds for zinc finger interference.


Assuntos
Fosfinas , Fosfinas/química , Níquel , Ligantes , Hidrólise , Dedos de Zinco , Zinco/metabolismo
2.
J Inorg Biochem ; 229: 111726, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065320

RESUMO

Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 µM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.


Assuntos
Imidazóis/farmacologia , Compostos Organoáuricos/farmacologia , Tripanossomicidas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Ouro/química , Imidazóis/síntese química , Leishmania braziliensis/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Compostos Organoáuricos/síntese química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química
3.
Dalton Trans ; 49(45): 16143-16153, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32239007

RESUMO

Cobalt complexes have been demonstrated to target zinc fingers, as shown by investigations of Doxovir, the trade name of the [CoIII(acacen)(2-Me-Imz)2]+ drug in clinical trials. Mechanistic studies indicate zinc finger disruption by metal coordination to His residues. Other than Doxovir, a few studies have investigated other ligands and geometries for cobalt complexes for zinc finger targeting. Tripod ligands demonstrated good zinc and cobalt chelation. In this manuscript, we report the ability of CoII and CoIII complexes of tri(2-pyridylmethyl)amine and N,N-di(2-pyridylmethyl)glycinate to disrupt zinc fingers. The results obtained by mass spectrometry and X-ray absorption spectroscopy demonstrate that the complexes were able to remove zinc from the zinc fingers. The product was oxidised apo-peptide. In contrast, the ligands themselves were able to remove zinc, and they did not promote oxidation, resulting in free Cys residues. Cobalt finger adducts were not detected for the complexes with tripod ligands unless they were coordinated to planar ligands such as salen or acacen. Studies of the interactions of cobalt complexes with amino acids demonstrated that tripod ligands promote the cysteine reaction, while the salen ligands promote histidine coordination, demonstrating a different mechanism of action. The results reported here are significant for better understanding and further design of zinc finger targeting compounds.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Dedos de Zinco , Aminas/química , Ligantes , Modelos Moleculares
4.
Inorg Chem ; 57(23): 14603-14616, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418750

RESUMO

The iron(II) complexes of two structural isomers of 2-(1 H-imidazol-2-yl)diazine reveal how ligand design can be a successful strategy to control the electronic and magnetic properties of complexes by fine-tuning their ligand field. The two isomers only differ in the position of a single diazinic nitrogen atom, having either a pyrazine (Z) or a pyrimidine (M) moiety. However, [Fe(M)3](ClO4)2 is a spin-crossover complex with a spin transition at 241 K, whereas [Fe(Z)3](ClO4)2 has a stable magnetic behavior between 2 and 300 K. This is corroborated by temperature-dependent Mössbauer spectra showing the presence of a quintet and a singlet state in equilibrium. The temperature-dependent single-crystal X-ray diffraction results relate the spin-crossover observed in [Fe(M)3](ClO4)2 to changes in the bond distances and angles of the coordination sphere of iron(II), hinting at a stronger σ donation of ligand Z in comparison to ligand M. The UV/vis spectra of both complexes are solved by means of the multiconfigurational wave-function-based method CASPT2 and confirm their different spin multiplicities at room temperature, as observed in the Mössbauer spectra. Calculations show larger stabilization of the singlet state in [Fe(Z)3]2+ than in [Fe(M)3]2+, stemming from the slightly stronger ligand field of the former (506 cm-1 in the singlet). This relatively weak effect is indeed capable of changing the spin multiplicity of the complexes and causes the appearance of the spin transition in the M complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...