Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e27714, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560196

RESUMO

This study examined the effect of traverse speed on the mechanical properties, corrosion-resistance behavior, and microstructure of friction stir-welded A390/10 wt% SiC composites-AA2024 Al alloy joints. The laminar flow of both materials was found to diminish in the stir zone (SZ) when the traverse speed of the tool increased from 40 to 80 mm/min, lowering their mixing rate. Large aspect ratio Si particles are broken by the tool pin-induced applied plastic strain, which turns them into refined equiaxed particles. Their aspect ratio remains unchanged in the SZ, despite their decreasing size. SiC and Si particles progressively come into view when moving from the AA2024 alloy's SZ to the composite workpieces. These changes happen abruptly as traverse speed increases due to the lack of an interfacial layer structure. The advancing side (AS)'s SZ grain size drops from 4.2 ± 0.3 µm to 1.2 ± 0.2 µm as the traverse speed drops from 80 to 40 mm/min. Increased traverse speed from 40 to 80 mm/min will result in a 5.8% decrease in elongation percentage (EP) and 8.4%, 36%, and 10.3% increases in the ultimate tensile strength (UTS), corrosion resistance, and yield strength, respectively.

2.
Materials (Basel) ; 15(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36363231

RESUMO

The objective of the current study was to butt-weld 6 mm-thick polyethylene (PE) plates by friction stir welding (FSW) using a non-conventional stationary shoulder tool. The welds were performed with an unheated shoulder and with a shoulder temperature of 85 °C. Additionally, rotational speeds of 870, 1140 and 1500 rpm; welding speeds of 60 and 120 mm/min; and plunge depths of 5.5 and 5.7 mm were used. The influence of these parameters on morphology, hardness, ultimate tensile strength, elongation at break and fracture modes was evaluated. Shoulder heating proved to be crucial for the optimization of PE joints by FSW, as it clearly improved joint efficiency. Furthermore, shoulder heating promoted the reduction in internal and external defects, such as porosity and surface burning. Defect-free weld seams were obtained with higher rotational speeds and a lower welding speed. A maximum joint efficiency of about 97% was achieved with a shoulder temperature of 85 °C, a rotational speed of 1500 rpm, a welding speed of 60 mm/min and a plunge depth of 5.7 mm. A weld with the average joint efficiency of 92% was produced at 120 mm/min, which based on the literature found is the highest welding speed reported that achieved a joint efficiency above 90%.

3.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683611

RESUMO

In the current investigation, the influence of the tool geometry, the position of the materials in the joint, the welding speed on the temperature and torque developed, and on the quality of the welds in dissimilar and tri-dissimilar T joints were analysed. The aluminium alloys used were AA2017-T4, AA6082-T6, and AA5083-H111 and the friction stir welds were performed with identical shoulder tools, but with either a pin with simple geometry or a pin with progressive geometry. Progressive pin tools proved to be a viable alternative in the production of dissimilar and tri-dissimilar welds, as they provide a larger tool/material friction area and a larger volume of dragged material, which promotes an increase in the heat generated and a good mixing of the materials in the stir zone, although they require a higher torque. Placing a stronger material on the advancing side also results in a higher temperature in the stir zone but requires higher torque too. The combination of these factors showed that tools with a progressive pin provide sound dissimilar and tri-dissimilar welds, unlike single-pin tools. The increase in the welding speed causes the formation of defects in the stir zone, even in tri-dissimilar welds carried out with a tool with a progressive pin, which impairs the fatigue strength of the welds.

4.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009317

RESUMO

Welding is one of the technological fields with the greatest impact in many industries, such as automotive, aerospace, energy production, electronics, the health sector, etc. [...].

5.
Materials (Basel) ; 13(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545259

RESUMO

The aim of this research was to investigate the influence of the properties of the base materials and welding speed on the morphology and mechanical behavior of the friction stir welds of three dissimilar aluminum alloys in a T-joint configuration. The base materials were the AA2017-T4, AA5083-H111, and AA6082-T6 alloys in 3 mm-thick sheets. The AA6082-T6 alloy was the stringer, and the other alloys were located either on the advancing or retreating sides of the skin. All the T-joint welds were produced with a constant tool rotation speed but with different welding speeds. The microstructures of the welds were analyzed using optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, and the electron backscatter diffraction technique. The mechanical properties were assessed according to micro-hardness, tensile, and fatigue testing. Good quality welds of the three dissimilar aluminum alloys could be achieved with friction stir welding, but a high ratio between the tool's rotational and traverse speeds was required. The welding speed influenced the weld morphology and fatigue strength. The positioning of the skin materials influenced the nugget morphology and the mechanical behavior of the joints. The joints in which the AA2017 alloy was positioned on the advancing side presented the best tensile properties and fatigue strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...