Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139000

RESUMO

Interleukin 18 (IL18) was originally identified as an inflammation-induced cytokine that is secreted by immune cells. An increasing number of studies have focused on its non-immunological functions, with demonstrated functions for IL18 in energy homeostasis and neural stability. IL18 is reportedly required for lipid metabolism in the liver and brown adipose tissue. Furthermore, IL18 (Il18) deficiency in mice leads to mitochondrial dysfunction in hippocampal cells, resulting in depressive-like symptoms and cognitive impairment. Microarray analyses of Il18-/- mice have revealed a set of genes with differential expression in liver, brown adipose tissue, and brain; however, the impact of IL18 deficiency in these tissues remains uncertain. In this review article, we discuss these genes, with a focus on their relationships with the phenotypic disease traits of Il18-/- mice.


Assuntos
Citocinas , Interleucina-18 , Animais , Camundongos , Inflamação/metabolismo , Interleucina-18/metabolismo , Humanos
2.
Transl Psychiatry ; 12(1): 404, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151082

RESUMO

Interleukin-18 (IL18) is an inflammatory cytokine that is related to psychiatric disorders such as depression and cognitive impairment. We previously found that IL18 deficiency may cause hippocampal impairment, resulting in depression-like behavioral changes. However, the potential role of IL18 in stressful conditions remains uncertain. In the present study, we examined the effect of IL18 on neural inflammation and stress tolerance during acute stress. Littermate Il18+/+ and Il18-/- mice were exposed to a single restraint stress for 6 h, and all assessments were performed 18 h after the mice were released from the restraint. In Il18-/- mice exposed to acute stress, the immobility times in both the forced swim test and tail suspension test were decreased, although no difference was observed in Il18+/+ mice. Il1ß, Il6, and Tnfα expression levels in the hippocampus of stressed Il18-/- mice were significantly higher than those in the other groups. Moreover, the numbers of astrocytes and microglia, including those in the active form, were also increased compared with those in other groups. Regarding the molecular mechanism, the HSF5 and TTR genes were specifically expressed in stressed Il18-/- mice. As a potential treatment, intracerebral administration of IL18 to Il18-/- mice resulted in partial recovery of changes in behavioral assessments. Our results revealed that IL18-deficient mice were more sensitive and had a longer response to acute stress than that in normal mice. In addition, neural inflammation and augmentation of glucocorticoid signals caused by stress were more intense and remained longer in Il18-/- mice, resulting in behavioral changes. In conclusion, IL18 might be an indispensable factor that modulates the stress response and maintains balance between neural inflammation and glucocorticoid signaling.


Assuntos
Glucocorticoides , Interleucina-18 , Estresse Psicológico , Animais , Depressão/metabolismo , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Interleucina-18/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Biomed Res Int ; 2021: 9975865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708129

RESUMO

Interleukin-18 (IL-18) is an inflammatory cytokine that has been linked to energy homeostasis and psychiatric symptoms such as depression and cognitive impairment. We previously revealed that deficiency in IL-18 led to hippocampal abnormalities and resulted in depression-like symptoms. However, the impact of IL-18 deficiency on other brain regions remains to be clarified. In this study, we first sought to confirm that IL-18 expression in neural cells can be found in human brain tissue. Subsequently, we examined the expression of genes in the prefrontal cortex of Il18 -/- mice and compared it with gene expression in mice subjected to a chronic mild stress model of depression. Extracted genes were further analyzed using Ingenuity® Pathway Analysis, in which 18 genes common to both the chronic mild stressed model and Il18 -/- mice were identified. Of those, 16 were significantly differentially expressed between Il18+/+ and Il18 -/- mice. We additionally measured protein expression of α-2-HS-glycoprotein (AHSG) and transthyretin (TTR) in serum and the brain. In the prefrontal cortex of Il18 -/- mice, TTR but not AHSG was significantly decreased. Conversely, in the serum of Il18 -/- mice, AHSG was significantly increased but not TTR. Therefore, our results suggest that in IL-18-deficit conditions, TTR in the brain is one of the mediators causally related to depression, and AHSG in peripheral organs is one of the regulators inducing energy imbalance. Moreover, this study suggests a possible "signpost" to clarify the molecular mechanisms commonly underlying the immune system, energy metabolism, neural function, and depressive disorders.


Assuntos
Transtorno Depressivo/imunologia , Interleucina-18/deficiência , Interleucina-18/metabolismo , Adulto , Animais , Encéfalo/metabolismo , Depressão/imunologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo
4.
Neuroscience ; 408: 147-160, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981863

RESUMO

Interleukin-18 (IL-18) is an inflammatory cytokine linked to major depressive disorder (MDD). MDD is closely related to metabolic disorders, such as diabetes mellitus (DM) and obesity. Moreover, DM is associated with cognitive impairment and promotes apoptosis of hippocampal cells by activating pro-apoptotic and inhibiting anti-apoptotic factors. IL-18-deficient (Il18-/-) mice are obese and have DM. Therefore, we hypothesized a close relationship between IL-18 and death of hippocampal cells, affecting neurogenesis related to behavioral changes such as MDD. Il18-/- male mice were generated on the C57Bl/6 background and Il18+/+ mice were used as controls. Behavioral, histopathological, and molecular responses, as well as responses to intracerebral recombinant IL-18 administration, were examined. Compared with Il18+/+ mice, Il18-/- mice had impaired learning and memory and exhibited lower motivation. In the Il18-/- mice, degenerated mitochondria were detected in synaptic terminals in the molecular layer, the polymorphic layer, and in mossy fibers in the dentate gyrus, suggesting mitochondrial abnormalities. Because of the degeneration of mitochondria in the dentate gyrus, in which pro-apoptotic molecules were upregulated and anti-apoptotic factors were decreased, apoptosis inducers were not cleaved, indicating inhibition of apoptosis. In addition, neurogenesis in the dentate gyrus and the maturity of neuronal cells were decreased in the Il18-/- mice, while intracerebral administration of recombinant IL-18 promoted significant recovery of neurogenesis. Our findings suggested that IL-18 was indispensable for mitochondrial homeostasis, sustaining clearance of degenerative neural cells, and supporting neurogenesis, normal neuronal maturation and hippocampal function.


Assuntos
Morte Celular/fisiologia , Depressão/metabolismo , Hipocampo/patologia , Interleucina-18/metabolismo , Neurônios/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Depressão/genética , Depressão/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-18/genética , Interleucina-18/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Knockout , Motivação/efeitos dos fármacos , Motivação/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia
5.
J Transl Med ; 16(1): 314, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30453990

RESUMO

BACKGROUND: The cytokine, interleukin-18 (IL-18), was originally identified as an interferon-γ-inducing proinflammatory factor; however, there is increasing evidence suggesting that it has non-immunological effects on physiological functions. We have previously investigated the potential pathophysiological relationship between IL-18 and dyslipidemia, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which were mediated by lipid energy imbalance. Therefore, herein we focused on brown adipocytes (BAs) and brown adipose tissue (BAT) related to energy consumption as non-shivering thermogenesis. METHODS: Il18-/- male mice were generated on the C57Bl/6 background, and littermate C57Bl/6 Il18+/+ male mice were used as controls. To reveal the direct effect of IL-18, primary cell cultures derived from both mice were established. Moreover, for molecular analysis, microarray, quantitative reverse transcription PCR and western blotting were performed using 6 and 12 weeks old mice. To evaluate the short- and long-term effects of IL-18 on BAT, recombinant IL-18 was administered for 2 and 12 weeks, respectively. RESULTS: Compared with Il18+/+ mice, BAT of Il18-/- mice showed earlier differentiation and lipid accumulation. To examine the direct effect of IL-18 on BAT, BA cell cultures were established. Myogenic factor 5-expressing adipose precursor cells were extracted from Il18+/+ and Il18-/- mice. PR domain containing 16 (PRDM16), a differentiation inducer, was strongly expressed in Il18-/- BAs, and uncoupling protein 1, a thermogenic and differentiation marker, was upregulated, resulting in the promotion of BA differentiation. Moreover, PRDM16-dependent and independent molecules related to BAT function, such as fibroblast growth factor 21, were activated. These findings were confirmed by comparing Il18+/+ and Il18-/- mice at 6 and 12 weeks of age. Additional analyses of the molecular mechanisms influencing the 'Quantity of adipocytes' identified three associated genes, apolipoprotein C3 (Apoc3), insulin-induced gene 1 (Insig1) and vitamin D (1,25-dihydroxyvitamin D3) receptor (Vdr). Intravenous administration of IL-18 not only significantly improved the expression of some of these genes, but it also significantly decreased the adipocytes' size. CONCLUSIONS: This study demonstrated the critical function of IL-18 in differentiation and lipid metabolism in BAs. Furthermore, IL-18 may contribute to novel treatments by improving the energy imbalance.


Assuntos
Tecido Adiposo Marrom/patologia , Adiposidade , Diferenciação Celular , Dislipidemias/metabolismo , Dislipidemias/patologia , Interleucina-18/deficiência , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/crescimento & desenvolvimento , Animais , Diferenciação Celular/efeitos dos fármacos , Fígado Gorduroso/patologia , Interleucina-18/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Termogênese/efeitos dos fármacos
6.
Eur J Pharmacol ; 685(1-3): 149-55, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22543082

RESUMO

Mechanism(s) of cisplatin-induced acute renal failure, as manifested by increases in blood urea nitrogen and creatinine, was evaluated in relation to production and activation of endogenous mediator(s) in mice. In interleukin (IL)-18-deficient (IL-18KO) mice, cisplatin failed to induce acute renal failure. Administration of recombinant IL-18 prior to cisplatin restored acute renal failure in IL-18KO mice. Accumulation of cisplatin in the kidney was not different in IL-18KO and wild-type (WT) mice, but, clearance of cisplatin was more rapid in IL-18KO mice than in WT mice. Cisplatin increased serum levels of aldosterone and angiotensin II in WT mice, but only angiotensin II levels in IL-18 KO mice. Administration of IL-18 augmented plasma levels of aldosterone and angiotensin II in WT mice. Eplerenone, an aldosterone receptor blocker, TY-51469, a chymase inhibitor and PD123319, a selective angiotensin II type 2 (AT2) receptor antagonist, but not benazepril, an angiotensin-converting enzyme inhibitor, and candesartan, a selective angiotensin II type 1 (AT1) receptor antagonist improved acute renal failure caused by cisplatin, confirming involvement of IL-18, aldosterone and angiotensin II in cisplatin-induced, chymase-dependent acute renal failure in mice. These results show that IL-18, aldosterone and angiotensin II synergistically act to prolong the accumulation of cisplatin in the kidney, leading to acute renal failure. Combined therapy with inhibitors for chymase and aldosterone receptors or AT2 receptors might reduce acute renal failure induced by cisplatin.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Antineoplásicos/toxicidade , Quimases/metabolismo , Cisplatino/toxicidade , Aldosterona/sangue , Angiotensina II/sangue , Angiotensina II/efeitos dos fármacos , Animais , Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Interleucina-18/genética , Interleucina-18/metabolismo , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Distribuição Tecidual
7.
Cytokine ; 33(4): 179-87, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16549365

RESUMO

Treatment of Nylon wool-passed cells (NWC) prepared from the spleen of C57BL/6 mice with IL-18 and IL-12, but not with IL-18 alone, resulted in induction of IFN-gamma, a Th1 cytokine, and GM-CSF at 24 h, and IL-13, a Th2 cytokine at 72 h. The induction of IL-13 was suppressed by anti-GM-CSF antibody, indicating involvement of GM-CSF in IL-13 production. When NWC incubated with IL-18 and IL-12 for 72 h ("primary treatment") were treated again with the same cytokines ("secondary treatment"), IL-13 was induced much more quickly than observed in the primary treatment. Flow cytometric analysis of NWC after the primary treatment showed marked increases in the CD4(-)CD8(-) non-T cell population bearing CD25(+), CD45RB(super high) and CD122(+). These cells were positive for CD49b but negative for NK1.1, indicating that they were not typical but NK-like cells. The NK-like cells produced IL-13 in response to the treatment with IL-18 alone, indicating that the generation of these cells in the primary treatment likely accounts for the quick production of IL-13 in the secondary treatment. These results show that IL-18 and IL-12 generates the NK-like cells in NWC by a process mediated by GM-CSF that are ready for producing IL-13.


Assuntos
Interleucina-12/imunologia , Interleucina-13/imunologia , Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Baço/imunologia , Animais , Anticorpos/imunologia , Antígenos CD4/imunologia , Antígenos CD8/imunologia , Separação Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Receptores de Interleucina-2/imunologia , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...