Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343433

RESUMO

Cerebrospinal fluid-contacting neurons (CSF-cNS) are considered mechanoreceptors and chemoreceptors involved in detecting changes in CSF circulation. However, considering that recent data suggest that this type of cell could exert an active response when an external stimulus is sensed, identification of CSF-cNS may be relevant. In this regard, some data suggest that a neuronal connection exists between the ventral region of the hypothalamic paraventricular nucleus (PVN) and rostral agranular insular cortex (RAIC); indeed, a potential CSF-cNS is hypothesized. However, a detailed analysis of this connection has not been conducted. Thus, using neuronal tracers (Fluoro-Gold® (FG) and cholera toxin (ChT)) coupled with transmission electron microscopy and immunofluorescence assays against Fluoro-Gold®, oxytocin (OXT), vasopressin (AVP) and oxytocin receptors (OTR), we describe an oxytocinergic or vasopressinergic CSF-cNS between the PVN and RAIC. Our results showed that CSF-cNS along the PVN labelled with oxytocin and/or AVP were present in dendritic projections near the third ventricle. This CSF-cNS in the PVN seems to project to the RAIC. Inside the RAIC, ultrastructural analysis showed that axons immunopositive for oxytocin from the PVN sustained synaptic connections with neurons that expressed OTR. These findings show that the CSF-cNS from the PVN sends projections to the RAIC. To the best of our knowledge, the relevance of CSF-cNS has not been elucidated; however, we hypothesized that the activation of cells could concomitantly release neuropeptides (i.e., oxytocin and AVP) in the CSF and RAIC. Thus, further analysis of the impact of neuropeptides released into the third ventricle and RAIC is warranted.

2.
BMC Public Health ; 24(1): 1848, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992680

RESUMO

BACKGROUND: The ongoing global crisis of Higher Education (HE) institutions during the post-COVID-19 pandemic period has increased the likelihood of enduring psychological stressors for staff. This study aimed to identify factors associated with job insecurity, burnout, psychological distress and coping amongst staff working at HE institutions globally. METHODS: An anonymous cross-sectional study was conducted in 2023 with staff at HE institutions across 16 countries. Job insecurity was measured using the Job Insecurity Scale (JIS), burnout using the Perceived Burnout measure question, psychological distress using the Kessler Psychological Distress Scale (K10), and coping using the Brief Resilient Coping Scale. Multivariable logistic regression with a stepwise variable selection method was used to identify associations. RESULTS: A total of 2,353 staff participated; the mean age (± SD) was 43(± 10) years and 61% were females. Most staff (85%) did not feel job insecurity, one-third (29%) perceived burnout in their jobs, more than two-thirds (73%) experienced moderate to very high levels of psychological distress, and more than half (58%) exhibited medium to high resilient coping. Perceived job insecurity was associated with staff working part-time [Adjusted Odds Ratio 1.53 (95% Confidence Intervals 1.15-2.02)], having an academic appointment [2.45 (1.78-3.27)], having multiple co-morbidities [1.86 (1.41-2.48)], perceived burnout [1.99 (1.54-2.56)] and moderate to very high level of psychological distress [1.68 (1.18-2.39)]. Perceived burnout was associated with being female [1.35 (1.12-1.63)], having multiple co-morbidities [1.53 (1.20-1.97)], perceived job insecurity [1.99 (1.55-2.57)], and moderate to very high levels of psychological distress [3.23 (2.42-4.30)]. Staff with multiple co-morbidities [1.46 (1.11-1.92)], mental health issues [2.73 (1.79-4.15)], perceived job insecurity [1.61 (1.13-2.30)], and perceived burnout [3.22 (2.41-4.31)] were associated with moderate to very high levels of psychological distress. Staff who perceived their mental health as good to excellent [3.36 (2.69-4.19)] were more likely to have medium to high resilient coping. CONCLUSIONS: Factors identified in this study should be considered in reviewing and updating current support strategies for staff at HE institutions across all countries to reduce stress and burnout and improve wellbeing.


Assuntos
Adaptação Psicológica , Esgotamento Profissional , COVID-19 , Humanos , Estudos Transversais , COVID-19/epidemiologia , COVID-19/psicologia , Masculino , Feminino , Adulto , Esgotamento Profissional/epidemiologia , Esgotamento Profissional/psicologia , Pessoa de Meia-Idade , Universidades , Angústia Psicológica , Saúde Global , SARS-CoV-2 , Pandemias
3.
Neuroscience ; 458: 256-270, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465410

RESUMO

Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.


Assuntos
Nociceptividade , Substância Cinzenta Periaquedutal , Humanos , Locus Cerúleo , Bulbo , Vias Neurais , Dor
4.
J Neurosci Methods ; 350: 109048, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359224

RESUMO

BACKGROUND: The CLARITY technique enables researchers to visualize different neuronal connections along the nervous system including the somatosensory system. NEW METHOD: The present work describes the antero-lateral and dorsal column pathways until the thalamic and cortical stations, as well as descending oxytocinergic and vasopressinergic innervations by means of combined CLARITY, neuronal tracing, and immunofluorescence techniques. We used male Sprague-Dawley rats of 13, 30, and 60 days. RESULTS: The main results are as follows: A) CLARITY is a reliable technique that can be combined with fluorescent neuronal tracers and immunofluorescence techniques without major procedure modifications; B) at spinal level, some primary afferent fibers were labeled by CGRP, as well as the presence of neuronal populations that simultaneously project to the gracile and ventral posterolateral thalamic nuclei; C) corticothalamic connections were visible when retrograde tracers were injected at thalamic level; D) oxytocin receptors were expressed in the spinal dorsal horn by GABAergic-positive neurons, reinforcing previous outcomes about the possible mechanism for oxytocin blocking the primary afferent sensory input. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: The CLARITY technique lets us observe in a transparent way the entire processed tissue compared with classical histological methods. CLARITY is a potentially useful tool to describe neuroanatomical structures and their neurochemical stratus.


Assuntos
Neurônios , Núcleos Ventrais do Tálamo , Animais , Axônios , Imunofluorescência , Masculino , Ratos , Ratos Sprague-Dawley
5.
J Neurosci ; 40(29): 5669-5680, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32571836

RESUMO

The rostral agranular insular cortex (RAIC) is a relevant structure in nociception. Indeed, recruitment of GABAergic activity in RAIC promotes the disinhibition of the locus ceruleus, which in turn inhibits (by noradrenergic action) the peripheral nociceptive input at the spinal cord level. In this regard, at the cortical level, oxytocin can modulate the GABAergic transmission; consequently, an interaction modulating nociception could exist between oxytocin and GABA at RAIC. Here, we tested in male Wistar rats the effect of oxytocin microinjection into RAIC during an inflammatory (by subcutaneous peripheral injection of formalin) nociceptive input. Oxytocin microinjection produces a diminution of (1) flinches induced by formalin and (2) spontaneous firing of spinal wide dynamic range cells. The above antinociceptive effect was abolished by microinjection (at RAIC) of the following: (1) L-368899 (an oxytocin receptor [OTR] antagonist) or by (2) bicuculline (a preferent GABAA receptor blocker), suggesting a GABAergic activation induced by OTR. Since intrathecal injection of an α2A-adrenoceptor antagonist (BRL 44408) partially reversed the oxytocin effect, a descending noradrenergic antinociception is suggested. Further, injection of L-368899 per se induces a pronociceptive behavioral effect, suggesting a tonic endogenous oxytocin release during inflammatory nociceptive input. Accordingly, we found bilateral projections from the paraventricular nucleus of the hypothalamus (PVN) to RAIC. Some of the PVN-projecting cells are oxytocinergic and destinate GABAergic and OTR-expressing cells inside RAIC. Aside from the direct anatomic link between PVN and RAIC, our findings provide evidence about the role of oxytocinergic mechanisms modulating the pain process at the RAIC level.SIGNIFICANCE STATEMENT Oxytocin is a neuropeptide involved in several functions ranging from lactation to social attachment. Over the years, the role of this molecule in pain processing has emerged, showing that, at the spinal level, oxytocin blocks pain transmission. The present work suggests that oxytocin also modulates pain at the cortical insular level by favoring cortical GABAergic transmission and activating descending spinal noradrenergic mechanisms. Indeed, we show that the paraventricular hypothalamicnucleus sends direct oxytocinergic projections to the rostral agranular insular cortex on GABAergic and oxytocin receptor-expressing neurons. Together, our data support the notion that the oxytocinergic system could act as an orchestrator of pain modulation.


Assuntos
Córtex Cerebral/fisiologia , Inflamação/fisiopatologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Ocitocina/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Formaldeído/administração & dosagem , Neurônios GABAérgicos/fisiologia , Inflamação/induzido quimicamente , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Nociceptividade/efeitos dos fármacos , Ocitocina/administração & dosagem , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos Wistar
6.
Neurosci Lett ; 685: 124-130, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30130553

RESUMO

Hypothalamic paraventricular nucleus (PVN) projections to the spinal dorsal horn (SDH) are related to antinociception. Several neuropeptides from this nucleus could be released to the spinal cord after nociceptive stimuli. Indeed, it has been shown that enkephalins, oxytocin and vasopressin could be released at this level. Although the antinociceptive effects of these neuropeptides are well studied, little is known about the potential interaction between these molecules. In this study, we provide anatomical evidence of the interaction between oxytocin (OT), vasopressin (AVP), dynorphin (DYN) and enkephalin (ENK) along the PVN projections to the spinal dorsal horn at L3 level. A retrograde tracer (True Blue®) microinjected at L3 in the SDH and immunofluorescence with antibodies against OT, AVP, DYN and ENK were used. The experiments showed different levels of peptide immunoreactivity distribution along the rostro-caudal area of the PVN. A high percentage of co-localizations between two of the peptides (OT-AVP, OT-DYN, AVP-ENK, DYN-ENK) were present along the PVN. The following co-localizations occupied 4.76-9.62% of the total PVN area. PVN projections to the SDH at L3 level showed similar results. Our results show that different antinociceptive peptides may be interacting with each other to evoke PVN antinociceptive effects as part of the endogenous system of nociceptive modulation.


Assuntos
Encefalinas/farmacologia , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Dinorfinas/farmacologia , Encefalinas/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nociceptividade/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Wistar , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
7.
Rev Neurosci ; 29(4): 377-386, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29222936

RESUMO

Central oxytocin and dopamine have an important role in the process of nociception at the spinal level as well as supraspinal structures, e.g. anterior cingulate cortex, insular cortex, amygdala, nucleus accumbens, and hypothalamus. Many studies have pointed out the importance of both systems in the pain descending modulatory system and in pain-related symptoms in some chronic disorders, e.g. Parkinson disease and fibromyalgia. The interaction between oxytocin and dopamine systems has been addressed in some motivational behaviors, e.g. maternal and sexual behaviors, pair bonding, and salience. In this aspect, we propose that an oxytocin-dopamine interaction could be present in nociception, and we also explain the possible hypotheses of such an interaction between these systems.


Assuntos
Sistema Nervoso Central/metabolismo , Dopamina/metabolismo , Nociceptividade/fisiologia , Ocitocina/metabolismo , Animais , Sistema Nervoso Central/patologia , Humanos
8.
Pain Rep ; 2(4): e608, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29392223

RESUMO

Growth hormone (GH) and insulin growth factor 1 (IGF1) are implicated in nociceptive processing; it has been reported that the latter participates in neonatal inflammatory nociception. In the target article, the authors propose that local inflammation evoked by carrageenan administration in mice produces a decrease in the local GH levels and an increment of IGF1 receptors type 1 expression, this produces behavioral nociception and peripheral sensitization that can be prevented by GH systemic administration pretreatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA