Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 14: 804-818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533841

RESUMO

Chagas disease is a neglected endemic disease prevalent in Latin American countries, affecting around 8 million people. The first-line treatment, benznidazole (BNZ), is effective in the acute stage of the disease but has limited efficacy in the chronic stage, possibly because current treatment regimens do not eradicate transiently dormant Trypanosoma cruzi amastigotes. Nanostructured lipid carriers (NLC) appear to be a promising approach for delivering pharmaceutical active ingredients as they can have a positive impact on bioavailability by modifying the absorption, distribution, and elimination of the drug. In this study, BNZ was successfully loaded into nanocarriers composed of myristyl myristate/Crodamol oil/poloxamer 188 prepared by ultrasonication. A stable NLC formulation was obtained, with ≈80% encapsulation efficiency (%EE) and a biphasic drug release profile with an initial burst release followed by a prolonged phase. The hydrodynamic average diameter and zeta potential of NLC obtained by dynamic light scattering were approximately 150 nm and -13 mV, respectively, while spherical and well-distributed nanoparticles were observed by transmission electron microscopy. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and small-angle X-ray scattering analyses of the nanoparticles indicated that BNZ might be dispersed in the nanoparticle matrix in an amorphous state. The mean size, zeta potential, polydispersity index, and %EE of the formulation remained stable for at least six months. The hemolytic effect of the nanoparticles was insignificant compared to that of the positive lysis control. The nanoparticle formulation exhibited similar performance in vitro against T. cruzi compared to free BNZ. No formulation-related cytotoxic effects were observed on either Vero or CHO cells. Moreover, BNZ showed a 50% reduction in CHO cell viability at 125 µg/mL, whereas NLC-BNZ and non-loaded NLC did not exert a significant effect on cell viability at the same concentration. These results show potential for the development of new nanomedicines against T. cruzi.

2.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986881

RESUMO

Colorectal cancer is occasionally called colon or rectal cancer, depending on where cancer begins to form, and is the second leading cause of cancer death among both men and women. The platinum-based [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) compound has demonstrated encouraging anticancer activity. Three different systems of 8-QO-Pt-encapsulated nanostructured lipid carriers (NLCs) with riboflavin (RFV) were investigated. NLCs of myristyl myristate were synthesized by ultrasonication in the presence of RFV. RFV-decorated nanoparticles displayed a spherical shape and a narrow size dispersion in the range of 144-175 nm mean particle diameter. The 8-QO-Pt-loaded formulations of NLC/RFV with more than 70% encapsulation efficiency showed sustained in vitro release for 24 h. Cytotoxicity, cell uptake, and apoptosis were evaluated in the HT-29 human colorectal adenocarcinoma cell line. The results revealed that 8-QO-Pt-loaded formulations of NLC/RFV showed higher cytotoxicity than the free 8-QO-Pt compound at 5.0 µM. All three systems exhibited different levels of cellular internalization. Moreover, the hemotoxicity assay showed the safety profile of the formulations (less than 3.7%). Taken together, RFV-targeted NLC systems for drug delivery have been investigated for the first time in our study and the results are promising for the future of chemotherapy in colon cancer treatment.

3.
Chem Phys Lipids ; 249: 105252, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272518

RESUMO

Vitamin E (VitE) is one of the most important antioxidants and plays a key role in decreasing the inflammatory effects of oxidative stress caused by recurrent doses of iron administration in anemia treatment. However, VitE is poorly soluble in aqueous environments. Here, VitE encapsulation into solid lipid nanoparticles (SLN) composed of myristil myristate to improve its bioavailability was proposed. A 99.9 ± 0.1% encapsulation efficiency with a drug/lipid ratio of 500 µg/mg and 478 higher VitE solubility was obtained. The antioxidant properties of VitE after encapsulation were maintained. SLN-VitE showed a 228.2 nm mean diameter with low polidispersitivity (0.335), and negative Z potential (ζ ≈ -9.0 mV). The SLN were well-dispersed, displayed spherical and homogeneous morphology by TEM. A controlled release of VitE from SLN was found. The XRD and FTIR analyses revealed the presence of a nanostructured architecture of SLN after VitE incorporation. We probed the safety of SLN-VitE after contact with three in vitro cell models: erythrocytes, lymphocytes and HepG2 cells. The cell viability in presence of SLN, SLN-VitE, and their combinations with iron was not affected. The comet assay demonstrated that the DNA damage caused by iron administration was decrease in presence of SLN-VitE.


Assuntos
Anemia , Nanopartículas , Humanos , Portadores de Fármacos , Lipídeos , Vitamina E , Tamanho da Partícula , Antioxidantes/farmacologia , Anemia/induzido quimicamente , Anemia/tratamento farmacológico
4.
Pharmaceutics ; 14(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36015237

RESUMO

Liver inflammation represents a major clinical problem in a wide range of pathologies. Among the strategies to prevent liver failure, dexamethasone (DXM) has been widely used to suppress inflammatory responses. The use of nanocarriers for encapsulation and sustained release of glucocorticoids to liver cells could provide a solution to prevent severe side effects associated with systemic delivery as the conventional treatment regime. Here we describe a nanostructured lipid carrier developed to efficiently encapsulate and release DXM. This nano-formulation proved to be stable over time, did not interact in vitro with plasma opsonins, and was well tolerated by primary non-parenchymal liver cells (NPCs). Released DXM preserved its pharmacological activity, as evidenced by inducing robust anti-inflammatory responses in NPCs. Taken together, nanostructured lipid carriers may constitute a reliable platform for the delivery of DXM to treat pathologies associated with chronic liver inflammation.

5.
Vet Rec Open ; 8(1): e12, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34188940

RESUMO

BACKGROUND: Fish oil (FO) supplementation as a source of omega 3 fatty acids is associated with beneficial effects on health. However, high unsaturated fatty acid content in the diet could result in increased lipid peroxidation and damage to proteins, lipids and DNA. We evaluated the effect of dietary FO supplementation on DNA damage in peripheral blood lymphocytes of dogs. Additionally, we determined the effect of FO supplementation on lipid peroxidation and lipid profile of these dogs. METHODS: Healthy male dogs (n = 9) were randomly assigned to one of two diets during 90 days: control (CG, n = 4), based on a commercial food, and FO (FOG, n = 5), the same food supplemented with 1000 mg FO. Blood samples were collected on days -1, 30, 60 and 90. DNA damage was assessed with the comet assay, and the damage index was obtained. Malondialdehyde (MDA) levels were determined as an indicator of lipid peroxidation. Lipid profile determination included serum triglyceride, cholesterol, low-density lipoprotein and high-density lipoprotein levels (HDL). RESULTS: Damage index values (arbitrary units) were lower in FOG on day 30 (CG, 13.7 ± 2.5; FOG, 6.5 ± 2.5), 60 (CG, 14.7 ± 2.5; FOG, 3.5 ± 2.5) and 90 (CG, 15.5 ± 2.5; FOG, 3.0 ± 2.5) compared with CG (treatment × time interaction, p < 0.01). Serum MDA and HDL concentrations were lower in FOG compared with CG on day 60 and 90 (treatment × time interaction, p < 0.05). CONCLUSION: These findings suggest that dietary FO supplementation did not induce DNA damage in peripheral blood lymphocytes of healthy dogs, but rather reduced it.

6.
J Pharm Sci ; 110(4): 1739-1748, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33428918

RESUMO

The development of smart nanoparticles (NPs) became a trend to enhance the delivery of drugs. In the present work, Tobramycin (TB), an aminoglycoside antibiotic that displays several undesirable side effects, has been encapsulated into cationic Eudragit®E100 (E100) NPs for the treatment of infections caused by Pseudomonas aeruginosa. Combination with neutral Eudragit®NE30D (NE30D) NPs containing resveratrol (RSV), a strong natural antioxidant, increased the antimicrobial activity of TB (75% higher than free TB). NPs were stabilized with 1.0% (w/v) poloxamer 188 (P188) or poloxamer 407 (P407) as surfactants. E100 NPs showed 83.3 ± 8.5%, and 70.1 ± 2.7 encapsulation efficiency (EE) of TB with P188 and P407 coatings, respectively. The presence of NPs was confirmed by DLS and TEM studies. TB was controlled released from NPs for 6 h. Hemotoxicity tests of NPs in the range of MIC values on human blood gave negative results. Analysis of Surface Plasmon Resonance verified that NE30D/P407/RSV does not interact with plasma proteins BSA, IgG or fibrinogen, besides E100/P188/TB interact with BSA, findings that are compatible with a negligible in vivo clearance of the nanovehicles. The obtained results show a potential binary fluid composed of two NPs to highly improve the effectiveness of conventional antibiotics.


Assuntos
Nanopartículas , Coroa de Proteína , Antibacterianos/toxicidade , Portadores de Fármacos , Humanos , Ácidos Polimetacrílicos , Resveratrol , Tobramicina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...