Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669901

RESUMO

The importance of receiver biases in shaping the evolution of many signalling systems is widely acknowledged. Here, we show that receiver bias can explain which traits evolve to become warning signals. For warning coloration, a generalization bias for a signalling trait can result from predators learning to discriminate unprofitable from profitable prey. However, because the colour patterns of prey are complex traits with multiple components, it is crucial to understand which of the many aspects of prey appearance evolve into signals. We provide experimental evidence that the more salient differences in prey traits give rise to greater generalization bias, corresponding to stronger selection towards trait exaggeration. Our results are based on experiments with domestic chickens as predators in a Skinner-box-like setting, and imply that the difference in appearance between profitable and unprofitable prey that is most rapidly learnt produces the greatest generalization bias. As a consequence, certain salient traits of unprofitable prey are selected towards exaggeration to even higher salience, driving the evolution of warning coloration. This general idea may also help to explain the evolution of many other striking signalling traits found in nature.


Assuntos
Evolução Biológica , Galinhas/fisiologia , Cor , Aprendizagem , Comportamento Predatório , Animais , Feminino , Cadeia Alimentar , Modelos Biológicos
2.
Evolution ; 72(3): 531-539, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315519

RESUMO

Batesian mimicry evolution involves an initial major mutation that produces a rough resemblance to the model, followed by smaller improving changes. To examine the learning psychology of this process, we applied established ideas about mimicry in Papilio polyxenes asterius of the model Battus philenor. We performed experiments with wild birds as predators and butterfly wings as semiartificial prey. Wings of hybrids of P. p. asterius and Papilio machaon were used to approximate the first mutant, with melanism as the hypothesized first mimetic trait. Based on previous results about learning psychology and imperfect mimicry, we predicted that: melanism should have high salience (i.e., being noticeable and prominent), meaning that predators readily discriminate a melanistic mutant from appearances similar to P. machaon; the difference between the first mutant and the model should have intermediate salience to allow further improvement of mimicry; and the final difference in appearance between P. p. asterius and B. philenor should have very low salience, causing improvement to level off. Our results supported both the traditional hypothesis and all our predictions about relative salience. We conclude that there is good agreement between long-held ideas about how Batesian mimicry evolves and recent insights from learning psychology about the role of salience in mimicry evolution.


Assuntos
Mimetismo Biológico , Borboletas/fisiologia , Aprendizagem , Comportamento Predatório , Aves Canoras/fisiologia , Animais , Cor , Feminino , Cadeia Alimentar , Masculino , Asas de Animais/fisiologia
3.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093221

RESUMO

An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges (Polygonia c-album, Aglais io and Aglais urticae) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies.


Assuntos
Borboletas/fisiologia , Memória , Corpos Pedunculados/fisiologia , Plasticidade Neuronal , Oviposição , Animais
4.
Proc Biol Sci ; 282(1818): 20152127, 2015 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-26511051

RESUMO

Mimicry occurs when one species gains protection from predators by resembling an unprofitable model species. The degree of mimic-model similarity is variable in nature and is closely related to the number of traits that the mimic shares with its model. Here, we experimentally test the hypothesis that the relative salience of traits, as perceived by a predator, is an important determinant of the degree of mimic-model similarity required for successful mimicry. We manipulated the relative salience of the traits of a two-trait artificial model prey, and subsequently tested the survival of mimics of the different traits. The unrewarded model prey had two colour traits, black and blue, and the rewarded prey had two combinations of green, brown and grey shades. Blue tits were used as predators. We found that the birds perceived the black and blue traits to be similarly salient in one treatment, and mimic-model similarity in both traits was then required for high mimic success. In a second treatment, the blue trait was the most salient trait, and mimic-model similarity in this trait alone achieved high success. Our results thus support the idea that similar salience of model traits can explain the occurrence of multi-trait mimicry.


Assuntos
Aprendizagem por Discriminação , Passeriformes/fisiologia , Fenótipo , Comportamento Predatório , Animais , Cor , Feminino , Masculino , Modelos Biológicos
5.
Curr Biol ; 24(9): 965-9, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24726157

RESUMO

The theory of mimicry explains how a mimic species gains advantage by resembling a model species [1-3]. Selection for increased mimic-model similarity should then result in accurate mimicry, yet there are many surprising examples of poor mimicry in the natural world [4-8]. The existence of imperfect mimics remains a major unsolved conundrum. We propose and experimentally test a novel explanation of the phenomenon. We argue that predators perceive prey as having several traits, but that the traits differ in their importance for learning. When predators learn to discriminate prey, high-salience traits overshadow other traits, leaving them under little or no selection for similarity, and allow imperfect mimicry to succeed. We tested this idea experimentally, using blue tits as predators and artificial prey with three prominent traits: color, pattern, and shape. We found that otherwise imperfect color mimics were avoided about as much as perfect mimics, whereas pattern and shape mimics did not gain from their similarity to the model. All traits could separately be perceived and learned by the predators, but the color trait was learned at a higher rate, implying that it had higher salience. We conclude that difference in salience between components of prey appearance is of major importance in explaining imperfect mimicry.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Imitativo/fisiologia , Passeriformes/fisiologia , Comportamento Predatório/fisiologia , Animais , Modelos Biológicos , Reconhecimento Visual de Modelos , Pigmentação da Pele
6.
Insect Sci ; 21(4): 499-506, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24006353

RESUMO

In most phytophagous insects, the larval diet strongly affects future fitness and in species that do not feed on plant parts as adults, larval diet is the main source of nitrogen. In many of these insect-host plant systems, the immature larvae are considered to be fully dependent on the choice of the mothers, who, in turn, possess a highly developed host recognition system. This circumstance allows for a potential mother-offspring conflict, resulting in the female maximizing her fecundity at the expense of larval performance on suboptimal hosts. In two experiments, we aimed to investigate this relationship in the polyphagous comma butterfly, Polygonia c-album, by comparing the relative acceptance of low- and medium-ranked hosts between females and neonate larvae both within individuals between life stages, and between mothers and their offspring. The study shows a variation between females in oviposition acceptance of low-ranked hosts, and that the degree of acceptance in the mothers correlates with the probability of acceptance of the same host in the larvae. We also found a negative relationship between stages within individuals as there was a higher acceptance of lower ranked hosts in females who had abandoned said host as a larva. Notably, however, neonate larvae of the comma butterfly did not unconditionally accept to feed from the least favorable host species even when it was the only food source. Our results suggest the possibility that the disadvantages associated with a generalist oviposition strategy can be decreased by larval participation in host plant choice.


Assuntos
Borboletas/fisiologia , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Oviposição/fisiologia , Animais , Feminino , Magnoliopsida , Folhas de Planta
7.
Evolution ; 66(3): 807-817, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380441

RESUMO

In Batesian mimicry, a harmless prey species imitates the warning coloration of an unpalatable model species. A traditional suggestion is that mimicry evolves in a two-step process, in which a large mutation first achieves approximate similarity to the model, after which smaller changes improve the likeness. However, it is not known which aspects of predator psychology cause the initial mutant to be perceived by predators as being similar to the model, leaving open the question of how the crucial first step of mimicry evolution occurs. Using theoretical evolutionary simulations and reconstruction of examples of mimicry evolution, we show that the evolution of Batesian mimicry can be initiated by a mutation that causes prey to acquire a trait that is used by predators as a feature to categorize potential prey as unsuitable. The theory that species gain entry to mimicry through feature saltation allows us to formulate scenarios of the sequence of events during mimicry evolution and to reconstruct an initial mimetic appearance for important examples of Batesian mimicry. Because feature-based categorization by predators entails a qualitative distinction between nonmimics and passable mimics, the theory can explain the occurrence of imperfect mimicry.


Assuntos
Adaptação Biológica , Evolução Biológica , Borboletas/genética , Modelos Genéticos , Pigmentação/genética , Animais , Simulação por Computador , Feminino , Masculino
8.
Evolution ; 64(3): 810-22, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19796146

RESUMO

The two-step hypothesis of Müllerian mimicry evolution states that mimicry starts with a major mutational leap between adaptive peaks, followed by gradual fine-tuning. The hypothesis was suggested to solve the problem of apostatic selection producing a valley between adaptive peaks, and appears reasonable for a one-dimensional phenotype. Extending the hypothesis to the realistic scenario of multidimensional phenotypes controlled by multiple genetic loci can be problematic, because it is unlikely that major mutational leaps occur simultaneously in several traits. Here we consider the implications of predator psychology on the evolutionary process. According to feature theory, single prey traits may be used by predators as features to classify prey into discrete categories. A mutational leap in such a trait could initiate mimicry evolution. We conducted individual-based evolutionary simulations in which virtual predators both categorize prey according to features and generalize over total appearances. We found that an initial mutational leap toward feature similarity in one dimension facilitates mimicry evolution of multidimensional traits. We suggest that feature-based predator categorization together with predator generalization over total appearances solves the problem of applying the two-step hypothesis to complex phenotypes, and provides a basis for a theory of the evolution of mimicry rings.


Assuntos
Evolução Biológica , Modelos Genéticos , Mimetismo Molecular/genética , Adaptação Fisiológica/genética , Animais , Mutação , Fenótipo , Comportamento Predatório , Seleção Genética
9.
Proc Biol Sci ; 271(1557): 2621-5, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15615689

RESUMO

Aposematism, the use of conspicuous colours to advertise unpalatability to predators, is perhaps the most studied signalling system in nature. However, its evolutionary stability remains paradoxical. The paradox is illustrated by the problem of automimicry. Automimics are palatable individuals within a population of unpalatable aposematics. Automimics benefit from predators avoiding warning coloration without carrying the models' cost of unpalatability, and should increase in the population, destabilizing the signalling system, unless selected against in some way. Cautious sampling, instead of avoidance, by predators may offer a solution to this problem. Here, we investigate the effect of automimic frequency on predator sampling behaviour, and whether predator sampling behaviour may provide a selection pressure against mimics. Domestic chicks (Gallus gallus domesticus) were subjected to the task of discriminating between green (signalling) and untreated brown chick crumbs. Some of the green crumbs were quinine treated and thus unpalatable. The frequency of palatable signalling prey items varied in four treatments; all unpalatable, low automimic frequency, high automimic frequency and all palatable. The results show that predator sampling behaviour is sensitive to automimic frequency and that predators may discriminate between models and mimics through sampling, and thereby benefit unprofitable prey. The results suggest somewhat surprisingly that aposematic signalling is stable only because of the actions of those predators not actually deterred by warning signals.


Assuntos
Adaptação Fisiológica , Aprendizagem da Esquiva/fisiologia , Modelos Biológicos , Comportamento Predatório/fisiologia , Seleção Genética , Animais , Galinhas , Pigmentação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...