Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2505, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169179

RESUMO

Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 µM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Nitrilas/química , Nitrilas/metabolismo , Nitrilas/farmacologia , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
2.
Eur J Pharm Biopharm ; 158: 198-210, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33248268

RESUMO

The natural capacity of extracellular vesicles (EVs) to transport their payload to recipient cells has raised big interest to repurpose EVs as delivery vehicles for xenobiotics. In the present study, bovine milk-derived EVs (BMEVs) were investigated for their potential to shuttle locked nucleic acid-modified antisense oligonucleotides (LNA ASOs) into the systemic circulation after oral administration. To this end, a broad array of analytical methods including proteomics and lipidomics were used to thoroughly characterize BMEVs. We found that additional purification by density gradients efficiently reduced levels of non-EV associated proteins. The potential of BMEVs to functionally transfer LNA ASOs was tested using advanced in vitro systems (i.e. hPSC-derived neurons and primary human cells). A slight increase in cellular LNA ASO internalization and target gene reduction was observed when LNA ASOs were delivered using BMEVs. When dosed orally in mice, only a small fraction (about 1% of total administered dose) of LNA ASOs was recovered in the peripheral tissues liver and kidney, however, no significant reduction in target gene expression (i.e. functional knockdown) was observed.


Assuntos
Portadores de Fármacos/química , Vesículas Extracelulares/química , Leite/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Administração Oral , Animais , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Neurônios , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/farmacocinética , Células-Tronco Pluripotentes , Cultura Primária de Células , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...