Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590811

RESUMO

UAVs, used for professional purposes, often intervene in unfamiliar terrain and challenging conditions. Unlike recreational UAVs, such professional and specialised UAVs are very expensive to develop and operate, and their value is not negligible. Due to the nature of operations in an unknown or dangerous environment, there are also situations with forced interruption and termination of the flight mission or a collision with the environment. Locating a lost vehicle presents a new challenge for UAV operators. The possibilities of today's localised commercial aircraft in distress (COSPASS/SARSAT systems) are undesirable for selective special-purpose drones. The optimisation of the location in the event of an emergency or catastrophic landing may be justified by a social or other condition, where the user wants to search for the device by a system other than the one experienced for rescuing people, ideally on their reserved frequencies. The article proposes a new approach to solving the problem based on the design of a terrestrial localisation system based on the methods of processing and correlation of the obtained data by the physical principle of the Doppler effect and its own system adaptation. This creates an innovative concept of a targeting system based on the broadcasting of distress (VHF) signal by crashed UAV. This signal is captured and evaluated by the IDVOR system, making it possible to determine the direction in which the searched UAV is placed. In order to determine the difference between standard targeting systems of the UAV, which use information about position (exact coordinates (x,y,z)), the IDVOR system is able to determine direction, independent of other systems in every "enemy" or "inhospitable" territory.


Assuntos
Aeronaves , Dispositivos Aéreos não Tripulados , Humanos
2.
Sensors (Basel) ; 21(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883925

RESUMO

The strict safety requirements of air transport for nonstandard placement of electronic onboard systems require an innovative approach to the experimental verification of the placement of these devices. Particular attention is required to the location of these electronic devices' antenna systems on the fuselage. A prerequisite for determining the location of the antenna and verifying its radiation is a thorough knowledge of the radio communication transmission of onboard electronic systems in cooperation with terrestrial or satellite systems. From this point of view, this article focuses on an innovative method of verifying the spherical radiation characteristics of the antenna of an onboard rescue system emergency locator transmitter (ELT) to assess its communication link with the Cospas-Sarsat satellite system. The measurement is performed on a small sports two-seater aircraft with an antenna placed in an unusual place in the aircraft's cabin, between the seats. It was impossible to use a suitable nonreflective attenuation chamber for the measurement, so we present a method and procedure for this type of measurement in the open space of an airport. The achieved results prove the plausibility and reproducibility of the measurement. Furthermore, combining several polar radiation characteristics makes it possible to obtain an idea, even if only a part, of the spatial (spherical) radiation characteristic. This article presents a simple method of measuring the characteristics of aircraft antennas when it is not possible to use a suitable professional nonreflective attenuation chamber for measurements for various reasons. This method can also be used on other larger means of transport or other objects that experience the same problem.


Assuntos
Aeronaves , Aeroportos , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 21(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572556

RESUMO

The aircraft avionics modernization process often requires optimization of the aircraft itself. Scale models of aircraft and their antennas are frequently used to solve this problem. Here we present interesting properties of the resonant antennas, which were discovered serendipitously during the measurement process of some microwave antennas' models as part of an aircraft modernization project. Aircraft microwave antennas are often designed as non-symmetric flat microwave antennas. Due to their thin, low and longitudinally elongated outer profile, they are also called tail antennas. An analysis of the resonant properties of non-symmetric antennas was performed in the band from 1 GHz to 4 GHz. The length of the antenna models ranged from 2 cm to 7 cm. The width of the antennas, together with the thickness of the strip, was always a constant parameter for one measured set of six antennas. In the measurement and subsequent analysis, attention was focused on the first-series resonant frequency (λ/4) of each antenna. During the evaluation of the resonance parameters, the flat microwave antenna models showed specific resonant properties different from those of conventional cylindrical microwave antennas. This article aims to inform professionals about these unknown specific properties of non-symmetrical antennas. The results of experimental measurements are analyzed theoretically and then visually compared using graphs so that the reader can more easily understand the properties observed. These surprising observations open up some new possibilities for the design, implementation, and use of flat microwave antennas, as found in modern aircraft, automobiles, etc.

4.
Sensors (Basel) ; 21(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450837

RESUMO

We consider how to protect Unmanned Aerial Vehicles (UAVs) from Global Positioning System (GPS) spoofing attacks to provide safe navigation. The Global Navigation Satellite System (GNSS) is widely used for locating drones and is by far the most popular navigation solution. This is because of the simplicity and relatively low cost of this technology, as well as the accuracy of the transmitted coordinates. Nevertheless, there are many security threats to GPS navigation. These are primarily related to the nature of the GPS signal, as an intruder can jam and spoof the GPS signal. We discuss methods of protection against this type of attack and have developed an experimental stand and conducted scenarios of attacks on a drone's GPS system. Data from the UAV's flight log were collected and analyzed in order to see the attack's impact on sensor readings. From this we identify a new method for detecting UAV anomalies by analyzing changes in internal parameters of the UAV. This self-diagnosis method allows a UAV to independently assess the presence of changes in its own subsystems indicative of cyber attacks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...