Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 188: 1003-1011, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371043

RESUMO

Wood from invasive tree species Acacia dealbata and Ailanthus altissima was used to produce high value-added nanocellulose. Firstly, bleached pulps were produced from the wood of these tree species after kraft cooking. Afterwards, the resultant pulps were pre-treated by TEMPO-mediated oxidation (Acacia dealbata) or enzymatic hydrolysis (Ailanthus altissima) followed by high-pressure homogenization. Hydrogels were obtained and characterized for their main physical and chemical properties, including rheology measurements. After freeze-drying, the surface properties of the materials were evaluated by inverse gas chromatography. Results showed that nano/micro fibrils could be obtained from the wood of these invasive species. Rheometry studies showed that Acacia-TEMPO cellulose nanofibrils form strong gels with high yield stress point and viscosities (reaching ca. 100,000 Pa·s). Additionally, the surfaces of the obtained nanocelluloses showed a dispersive component of the surface energy near 40 mJ/m2 and a prevalence of the Lewis acidic character over the basic one, as typical for cellulose-based materials. Finally, films with good mechanical and optical properties could be obtained from the cellulose hydrogels. Acacia-TEMPO film (produced by filtration/hot pressing) showed a tensile strength of 79 MPa, Young's modulus of 7.9 GPa, and a transparency of 88%. The water vapor barrier, however, was modest (permeability of 4.9 × 10-6 g/(Pa·day·m)).


Assuntos
Celulose/síntese química , Géis/síntese química , Espécies Introduzidas , Nanoestruturas/química , Árvores/química , Acacia/química , Ailanthus/química , Celulose/química , Cromatografia Gasosa , Óxidos N-Cíclicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Madeira/química , Difração de Raios X
2.
Carbohydr Polym ; 237: 116109, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241451

RESUMO

The present work intends to study the variations in the rheological properties and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils (CNF) aqueous suspensions, as a function of changes in concentration and systematic changes in the pH, by addition of acids with different anions. It was found that CNF suspensions form strong gels at mass fractions higher than 0.35 % and the gel point is ca. 0.18 %. On the other hand, aggregation is enhanced at acidic pH conditions due to lower charge repulsion among fibrils, leading to an increase of the suspension viscosity. However, distinct rheological behaviours were presented by CNF suspensions as different acids were applied. It was found that phosphate ions resulted in significant aggregation leading to formation of particles of large size and very strong gels, at pH 2.3; distinctly, the presence of acetate ions resulted in lower aggregation, lower particle size and weaker gels, at the same pH value.

3.
Adv Colloid Interface Sci ; 272: 101994, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31394436

RESUMO

Biopolymers-based composites are, in general, environmentally friendly materials, which can be obtained from renewable sources. Some of them can also present promising properties to be used in food packaging and electronic devices, being thus logical substitutes to petroleum-based polymers, specifically plastics. Cellulose nanofibrils (CNF) obtained by chemical/enzymatic pre-treatments followed by a mechanical treatment appear as a new suitable biomaterial. However, CNF are still quite expensive materials, due to the required chemicals/equipment/energy involved, and additionally, they present some limitations such as high hydrophilicity/high water vapour permeability. The combination of CNF with clay minerals, such as montmorillonite or kaolinite, as widely available geo-resources, represents an excellent way to reduce the amount of CNF used, enabling the production of valuable materials and reducing costs; and, at the same time it is possible to improve the characteristics of the formed materials, such as mechanical, gas barrier and fire retardancy properties, if appropriate conditions of preparation are used. Nevertheless, to obtain hybrid CNF/clay composites with superior properties it is necessary to ensure a good dispersion of the inorganic material in the CNF suspension and a good compatibility among the inorganic and organic components. To fulfil this goal, several strategies can be considered, including physical treatments of the suspensions, CNF and clay surface chemical modifications, and the use of a coupling agent. In this review article, the state-of-the-art on a new emerging generation of composites (films, foams or coatings) based on nanofibrillated cellulose and nanoclay, with focus on strategies for their preparation and most relevant achievements is critically reviewed, bearing in mind their potential application as substitutes for common plastics. A third component has been eventually added to these organic-inorganic hybrids, e.g., chitosan, carboxymethylcellulose, borate or epoxy resin, to enhance specific characteristics of the material. Some general background on the production of different types of CNF and their main properties is previously provided.

4.
Langmuir ; 33(4): 927-935, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28033707

RESUMO

Cellulose fibers were first functionalized on their surface by silanization with trichloromethylsilane in an optimized gas-solid reaction, and the occurrence of the reaction was assessed using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Then, the changes in the physicochemical surface properties of the material were thoroughly assessed using inverse gas chromatography (IGC) and X-ray photoelectron spectroscopy as surface specific tools. A very surprising combination of results was obtained: (i) the dispersive component of the surface energy was found to decrease from 42 to 14 mJ m-2 (at 40 °C), the latter figure representing one of the lowest values ever reported (by IGC) for cellulose-based materials, and (ii) both Lewis acidic and Lewis basic characters of the fiber surface, as measured by the injection into the IGC columns of 15 different vapor probes, significantly increased with silanization. Moreover, those remarkable changes in the surface properties of the material were obtained at a low degree of silanization (as shown by ATR-FTIR). The present results may have a great impact in what concerns the application of the described type of superhydrophobic cellulose fibers for the production of new biocomposites: an unusual enhanced compatibility both with low-surface energy polymeric matrices, such as polyolefins, as well as with other types of matrices through Lewis acid-base interactions, can be predicted.


Assuntos
Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Ácidos de Lewis/química , Adsorção , Silanos/química , Propriedades de Superfície , Termodinâmica
5.
Dalton Trans ; (9): 1197-203, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16482357

RESUMO

Several novel compounds with the non-linear optical chromophore 2-amino-5-nitropyridine (2A5NP) and Keggin polyoxoanions (alpha-isomers), having the general formula (2A5NP)(m)H(n)[XM12O40].xH2O, M = Mo, W, were synthesised. Compounds were obtained with X = P, n = 3, m = 3 and 4 and X = Si, n = m = 4 (x = 2-6). Thus, for each of the anions [PMo12O40]3- and [PW12O40]3- two different compounds were obtained, with the same anion and organic counterpart but with a different stoichiometric ratio. These presented different charge transfer properties and thermal stability. All compounds were characterised by spectroscopic and analytical techniques. The single crystal X-ray diffraction structure of (2A5NP)4H3[PMo12O40].2.5H2O.0.5C2H5OH showed that the water solvent molecules and the organic chromophores are assembled via infinite one-dimensional chains of hydrogen bonds with formation of open channels, which accommodate [PMo12O40]3- and ethanol solvent molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...