Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(49): 58279-58290, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756031

RESUMO

A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated ß3-tripeptide is presented. The drug-loaded ß3-peptide was successfully co-assembled with a functionally inert lipidated ß3-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days. The esterase-mediated sustained release of the bioactive brain-derived neurotrophic factor (BDNF) peptide mimics from the hydrogel resulted in increased neuronal survival and normal neuronal function of peripheral neurons. These studies define a versatile strategy for the facile synthesis and co-assembly of self-assembling ß3-peptide-based hydrogels with the ability to control drug release using endogenous esterases with potential in vivo applications for sustained localized drug delivery.


Assuntos
Esterases/metabolismo , Hidrogéis/farmacologia , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Esterases/sangue , Feminino , Hidrogéis/química , Hidrogéis/metabolismo , Teste de Materiais , Estrutura Molecular , Neurônios/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
2.
Nat Commun ; 12(1): 5375, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508070

RESUMO

The viability of lithium-sulfur batteries as an energy storage technology depends on unlocking long-term cycle stability. Most instability stems from the release and transport of polysulfides from the cathode, which causes mossy growth on the lithium anode, leading to continuous consumption of electrolyte. Therefore, development of a durable cathode with minimal polysulfide escape is critical. Here, we present a saccharide-based binder system that has a capacity for the regulation of polysulfides due to its reducing properties. Furthermore, the binder promotes the formation of viscoelastic filaments during casting which endows the sulfur cathode with a desirable web-like microstructure. Taken together this leads to 97% sulfur utilisation with a cycle life of 1000 cycles (9 months) and capacity retention (around 700 mAh g-1 after 1000 cycles). A pouch cell prototype with a specific energy of up to 206 Wh kg-1 is produced, demonstrating the promising potential for practical applications.

3.
ACS Nano ; 13(8): 8957-8969, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31314988

RESUMO

Graphene oxide liquid crystals (GOLCs) were exfoliated in a wide variety of solvents (water, ethylene glycol (EG), N-methyl-2-pyrrolidone (NMP), and dimethylformamide (DMF)) by high-speed shearing of graphite oxide. Quantitative polarized light imaging of the equilibrium nematic phases of the lyotropic GOLCs gives insights into the extent of aggregation and quantifiable textural features such as domain size, d. Large nematic domains >100 µm with a high overall degree of order were obtained in water and ethylene glycol, in contrast to ∼5-50 µm domains in NMP and DMF at comparable volume fractions. Comprehensive rheological studies of these GOLCs indicate that larger domains correlate with higher viscosity and higher elasticity, and scaling analysis shows a power-law dependence of the Ericksen number (Er) with domain size (Er ∝ d3.09). The improved understanding of the relationship between the microstructure and flow properties of GOLCs leads us to an approach of mixed solvent-based GOLCs as a means to tune viscoelastic properties. We demonstrate this approach for the formation of shear-aligned GOLC films for advanced flexible electronic applications such as all-carbon conductive films and thermal heaters.

4.
Langmuir ; 35(7): 2738-2746, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30652872

RESUMO

Thermal conductivity enhancement in a multiphase fluid such as water-in-oil emulsion can substantially improve efficacies in a broad range of applications. However, nanoparticle additives that are often used to do so can catastrophically destabilize a delicate emulsion system, in our case, a high internal phase emulsion (HIPE), whereas large concentration of additives can adversely impact practical processing aspects. Therefore, means to enhance the thermal conductivity of emulsions with a minute concentration of additives (<1 wt %) is a major scientific challenge. We report the enhancement in thermal conductivity of HIPE, by consigning either lipophilic GO (fGO) in the oil phase or hydrophilic GO in the water phase in combination with a well-known emulsifier. The rheological properties of fGO-HIPE showed non-Newtonian viscoelastic behavior similar to that of the original emulsion but with lower elastic modulus and viscosity, indicating that GO incorporation has enhanced processability. The thermal conductivity enhancements can be predicted by thermal circuit models, and the HIPEs with fGO and GO demonstrated 21 and 13% enhancements over the parent emulsion with a minor 0.1 w/w addition, respectively. A possible role of ordered colloidal structures of GO and fGO underlining this prepercolation behavior is inferred from comprehensive imaging and thermal studies.

5.
Langmuir ; 33(39): 10311-10321, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28872873

RESUMO

Graphene oxide (GO) is widely known as an amphiphile having hydrophilic oxygen functionality and unoxidized graphitic patches as the hydrophobic domains. Exploiting this amphiphilicity, GO serves as a surfactant to stabilize oil-water interfaces. While there are numerous reports on GO as a surfactant, most of these reports concern oil-in-water (O/W) emulsions, and there are very few on the formation of water-in-oil (W/O) emulsions. We prepared W/O emulsions using partially reduced graphene oxide (prGO) as a surfactant. The partial reduction introduces a subtle hydrophilic-lipophilic balance (HLB), which favors the formation of the W/O emulsion. The morphological features and rheological characteristics of the W/O emulsion with 75:25 water-to-oil ratio were investigated and analyzed in detail. The W/O emulsion was found to have polydispersity with wide range of droplet sizes varying between 2 to 500 µm. Using confocal microscopy, the role of parameters such as extent of reduction, continuous phase volume fraction and the concentration of GO on the stability, microstructure and variation of droplet size distribution of the W/O emulsion were carefully monitored. With prGO concentration as large as 0.05% (w/w), highly concentrated emulsion will form, and are stable up to 20 days from formation; destabilization occurred from sedimentation and subsequent coalescence as the partially reduced GO was limited by its dispersion ability in the oil-phase studied here. Understanding the mechanisms behind the transient stability will enable the development of novel emulsion compositions containing GO as a multifunctional additive.

6.
Langmuir ; 28(48): 16485-9, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23153213

RESUMO

Graphene oxide (GO) and graphene oxide-zinc oxide nanocomposites (GO-ZnO) were used as channel materials on SiO(2)/Si to fabricate thin-film transistors (TFT) with an aluminum source and drain. Pure GO-based TFT showed poor field-effect characteristics. However, GO-ZnO-nanocomposite-based TFT showed better field-effect performance because of the anchoring of ZnO nanostructures in the GO matrix, which causes a partial reduction in GO as is found from X-ray photoelectron spectroscopic data. The field-effect mobility of charge carriers at a drain voltage of 1 V was found to be 1.94 cm(2)/(V s). The transport of charge carriers in GO-ZnO was explained by a fluctuation-induced tunneling mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...