Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34769662

RESUMO

The current study site of the project Inform@Risk is located at a landslide prone area at the eastern slopes of the city of Medellín, Colombia, which are composed of the deeply weathered Medellín Dunite, an ultramafic Triassic rock. The dunite rock mass can be characterized by small-scale changes, which influence the landslide exposition to a major extent. Due to the main aim of the project, to establish a low-cost landslide early warning system (EWS) in this area, detailed field studies, drillings, laboratory and mineralogical tests were conducted. The results suggest that the dunite rock mass shows a high degree of serpentinization and is heavily weathered up to 50 m depth. The rock is permeated by pseudokarst, which was already found in other regions of this unit. Within the actual project, a hypothesis has for the first time been established, explaining the generation of the pseudokarst features caused by weathering and dissolution processes. These parameters result in a highly inhomogeneous rock mass and nearly no direct correlation of weathering with depth. In addition, the theory of a secondary, weathering serpentinization was established, explaining the solution weathering creating the pseudokarst structures. This contribution aims to emphasize the role of detailed geological data evaluation in the context of hazard analysis as an indispensable data basis for landslide early warning systems.


Assuntos
Deslizamentos de Terra , Cidades , Colômbia , Geologia , Tempo (Meteorologia)
2.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917752

RESUMO

Worldwide, cities with mountainous areas struggle with an increasing landslide risk as a consequence of global warming and population growth, especially in low-income informal settlements. Landslide Early Warning Systems (LEWS) are an effective measure to quickly reduce these risks until long-term risk mitigation measures can be realized. To date however, LEWS have only rarely been implemented in informal settlements due to their high costs and complex operation. Based on modern Internet of Things (IoT) technologies such as micro-electro-mechanical systems (MEMS) sensors and the LoRa (Long Range) communication protocol, the Inform@Risk research project is developing a cost-effective geosensor network specifically designed for use in a LEWS for informal settlements. It is currently being implemented in an informal settlement in the outskirts of Medellin, Colombia for the first time. The system, whose hardware and firmware is open source and can be replicated freely, consists of versatile LoRa sensor nodes which have a set of MEMS sensors (e.g., tilt sensor) on board and can be connected to various different sensors including a newly developed low cost subsurface sensor probe for the detection of ground movements and groundwater level measurements. Complemented with further innovative measurement systems such as the Continuous Shear Monitor (CSM) and a flexible data management and analysis system, the newly developed LEWS offers a good benefit-cost ratio and in the future can hopefully find application in other parts of the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...