Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 170(4): 495-509, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37575027

RESUMO

Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease associated with CD4+ Th1 and Th17 cell immune responses. Tumour necrosis factor-associated factor 5 (TRAF5) deficiency has been shown to aggravate DSS-induced colitis. However, the potential role of TRAF5 in regulating CD4+ T cell immune responses in the pathogenesis of IBD remains unclear. TRAF5-/- CD4+ CD45RBhigh T cells and WT CD4+ CD45RBhigh T cells were transferred to Rag2-/- mice via intravenous (i.v.) tail injection, respectively, to establish a chronic colitis model. Adeno-associated virus (AAV)-mediated gene knockout technique was used to knock out runt-associated transcription factor 1 (Runx1) expression in vivo. Specific cytokines of Th1 and Th17 cells were detected by quantitative RT-PCR, immunohistochemistry, ELISA, and flow cytometry. In T-cell transfer colitis mice, the Rag2-/- mice reconstituted with TRAF5-/- CD4+ CD45RBhigh T cells showed more severe intestinal inflammation than the WT control group, which was characterised by increased expression of INF-γ, TNF-α, IL-17a. Furthermore, we found that the INF-γ+ CD4+ , IL17a+ CD4+ , and INF-γ+ IL17a+ CD4+ T cells in the intestinal mucosa of Rag2-/- mice reconstituted with TRAF5-/- CD4+ CD45RBhigh T cells were significantly higher than those of the WT control group by flow cytometry. Mechanistically, knockout Runx1 inhibited the differentiation of TRAF5-/- CD4+ T cells into Th1 and Th17 cells in the intestinal mucosa of T-cell transfer colitis mice. TRAF5 regulates Th1 and Th17 cell differentiation and immune response through Runx1 to participate in the pathogenesis of colitis. Thus targeting TRAF5 in CD4+ T cells may be a novel treatment for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Células Th17 , Fator 5 Associado a Receptor de TNF/metabolismo , Mucosa Intestinal , Imunidade , Células Th1 , Camundongos Endogâmicos C57BL , Linfócitos T CD4-Positivos , Camundongos Knockout , Modelos Animais de Doenças , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo
2.
BMC Gastroenterol ; 23(1): 4, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611136

RESUMO

BACKGROUND: Immune cells and stromal cells in the tumor microenvironment play a vital role in the progression of colorectal cancer (CRC). The study aimed to screen valuable prognostic biomarkers in CRC based on stromal and immune scores. METHOD: The ESTIMATE algorithm was used to calculate the immune and stromal scores of CRC samples in TCGA. Then samples were divided into high and low score groups based on the median value of the scores. Differentially expressed genes (DEGs) associated with immune and stromal scores were screened. WGCNA and univariate COX regression analysis were performed to further identify key prognostic genes. Analysis of scRNA-seq for CRC was used for verifying the main source of the key genes. The prognostic value of they was validated based on The Gene Expression Profiling Interactive Analysis and GSE17536 dataset. TIMER and CIBERSORT algorithms were applied to analyze the correlations among key genes and tumor-infiltrating immune cells. Several pairs of colon cancer tissue were used to be proven. RESULT: 1314 upregulated and 4 downregulated genes were identified, which were significantly enriched in immune-related biological processes and pathways. Among these DEGs, SPOCK1 and POSTN were identified as key prognostic genes and mainly expressed in cancer-associated fibroblasts for CRC. High expression of SPCOK1 and POSTN was associated with advanced clinical stage, T stage, N stage, and poor prognosis of CRC. The results from CIBERSORT and TIMER revealed that SPOCK1 and POSTN were associated with tumor-infiltrating immune cells, especially macrophages and neutrophils. Meanwhile, in several pairs of human colorectal tissue samples, SPOK1 and POSTN were found to be significantly overexpressed in colorectal tissue compared with para-cancer tissue, and macrophage surface markers CD68 (co-expressed by M1 and M2 macrophages) and CD206 (M2-specific macrophage expression) were also overexpressed in cancer tissue. Besides, SPOCK1 and POSTN expression were positively correlated with the expression of immune checkpoints. CONCLUSION: Collectively, our results indicate that SPOCK1 and POSTN associated with CAF may be novel prognostic biomarkers in CRC and correlate with immune infiltrates.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Prognóstico , Algoritmos , Perfilação da Expressão Gênica , Biomarcadores , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Colorretais/genética , Moléculas de Adesão Celular/genética , Proteoglicanas
3.
Dig Liver Dis ; 54(12): 1706-1715, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35288064

RESUMO

BACKGROUND AND AIM: Nucleoporin NUP153 (NUP153) is involved in the regulation of nuclear transportation, mitosis, and tumor progression in various cancer cells. we aimed to investigate the roles of NUP153 in hepatocellular carcinoma (HCC). METHODS: NUP153 expression level and its relationship with clinical prognosis were analyzed based on The Cancer Genome Atlas (TCGA). Quantitative real-time PCR (qRT-PCR), Western Blot (WB), and Immunohistochemistry (IHC) were used to assess NUP153 expression in tissues and cell lines. Loss-of-function experiments were implemented for exploring the roles of NUP153 in HCC cells. Ultimately, how NUP153 exerted biological functions was plumbed by performing rescue assays in HCC. RESULTS: NUP153 expressed highly in HCC tissues and cell lines. Silencing NUP153 inhibited cellular multiplication, G1/S transition, migration, and triggered cytoskeletal rearrangement of Huh7 and HepG2 cells. Knockdown NUP153 caused up-regulation of mRNA and protein levels of P15, and siRNA deprivation of P15 partially reversed the function of low-level NUP153 in HCC. Meanwhile, silencing NUP153 caused down-regulation of mRNA and protein levels of c-Myc. Furthermore, the up-regulation of P15 and cell G1/S phase arrest induced by silencing NUP153 were partially reversed by overexpression of c-Myc. CONCLUSIONS: NUP153 increases the proliferation ability of cells via the c-Myc/P15 axis in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Regulação para Baixo , Neoplasias Hepáticas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular , RNA Mensageiro/genética , Linhagem Celular Tumoral , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...