Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 11, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167103

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has had a profound impact on the global health and economy. While mass vaccination for herd immunity is effective, emerging SARS-CoV-2 variants can evade spike protein-based COVID-19 vaccines. In this study, we develop a new immunization strategy by utilizing a nanocarrier, dendritic mesoporous silica nanoparticle (DMSN), to deliver the receptor-binding domain (RBD) and conserved T-cell epitope peptides (DMSN-P-R), aiming to activate both humoral and cellular immune responses in the host. The synthesized DMSN had good uniformity and dispersion and showed a strong ability to load the RBD and peptide antigens, enhancing their uptake by antigen-presenting cells (APCs) and promoting antigen delivery to lymph nodes. The DMSN-P-R vaccine elicited potent humoral immunity, characterized by highly specific RBD antibodies. Neutralization tests demonstrated significant antibody-mediated neutralizing activity against live SARS-CoV-2. Crucially, the DMSN-P-R vaccine also induced robust T-cell responses that were specifically stimulated by the RBD and conserved T-cell epitope peptides of SARS-CoV-2. The DMSN demonstrated excellent biocompatibility and biosafety in vitro and in vivo, along with degradability. Our study introduces a promising vaccine strategy that utilizes nanocarriers to deliver a range of antigens, effectively enhancing both humoral and cellular immune responses to prevent virus transmission.


Assuntos
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Epitopos de Linfócito T , Vacinação , Anticorpos Neutralizantes , Peptídeos , Anticorpos Antivirais
2.
Life Sci ; 334: 122231, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935276

RESUMO

AIM: To explore the mechanism of gut microbiota mediates protective effects of exercise against non-alcoholic fatty liver disease (NAFLD) development. MAIN METHODS: The male C57BL/6 mice were fed with high fat food (HFD) or normal diet (CON) respectively, and the obese mice were randomly divided into sedentariness (HFD) and exercise groups (HFD + Exe). The total intervention period was 18 weeks. Antibiotic treatment and fecal microbiota transplantation were applied to evaluate gut microbiota mediates the protective effects of exercise against NAFLD development. 16S rDNA profiling of gut microbiota and extracorporeal rehydration of Dubosiella newyorkensis were performed to identify the crucial role of Dubosiella in NAFLD improvement during exercise training. FGF21 knock-out mice were used to reveal the potential mechanism of exercise increased the abundance of Dubosiella. RT-PCR, Western blot, Histopathological examinations and Biochemical testing were performed to evaluate the lipid deposition and function in the liver. KEY FINDINGS: Treadmill exercise significantly ameliorated hepatic function and mitigated lipid accumulation in NAFLD mice, and these hepatoprotective benefits were mostly mediated by the Dubosiella. In addition, the increased abundance of Dubosiella during exercise training was modulated by FGF21 specifically. SIGNIFICANCE: In short, Dubosiella, chiefly regulated by FGF21 signaling during exercise training, has been discovered to govern the protective impacts of exercising counter to the development of NAFLD and exhibits a promising treatment target for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Exercício Físico , Lipídeos
3.
Cancer Commun (Lond) ; 43(12): 1354-1372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37670477

RESUMO

BACKGROUND: Hepatic inflammation is the major risk factor of hepatocellular carcinoma (HCC). However, the underlying mechanism by which hepatic inflammation progresses to HCC is poorly understood. This study was designed to investigate the role of ETS translocation variant 4 (ETV4) in linking hepatic inflammation to HCC. METHODS: Quantitative real-time PCR and immunoblotting were used to detect the expression of ETV4 in HCC tissues and cell lines. RNA sequencing and luciferase reporter assays were performed to identify the target genes of ETV4. Hepatocyte-specific ETV4-knockout (ETV4fl/fl, alb-cre ) and transgenic (ETV4Hep-TG ) mice and diethylnitrosamine-carbon tetrachloride (DEN-CCL4 ) treatment experiments were applied to investigate the function of ETV4 in vivo. The Cancer Genome Atlas (TCGA) database mining and pathological analysis were carried out to determine the correlation of ETV4 with tumor necrosis factor-alpha (TNF-α) and mitogen-activated protein kinase 11 (MAPK11). RESULTS: We revealed that ETV4 was highly expressed in HCC. High levels of ETV4 predicted a poor survival rate of HCC patients. Then we identified ETV4 as a transcription activator of TNF-α and MAPK11. ETV4 was positively correlated with TNF-α and MAPK11 in HCC patients. As expected, an increase in hepatic TNF-α secretion and macrophage accumulation were observed in the livers of ETV4Hep-TG mice. The protein levels of TNF-α, MAPK11, and CD68 were significantly higher in the livers of ETV4Hep-TG mice compared with wild type mice but lower in ETV4fl/fl, alb-cre mice compared with ETV4fl/fl mice as treated with DEN-CCL4 , indicating that ETV4 functioned as a driver of TNF-α/MAPK11 expression and macrophage accumulation during hepatic inflammation. Hepatocyte-specific knockout of ETV4 significantly prevented development of DEN-CCL4 -induced HCC, while transgenic expression of ETV4 promoted growth of HCC. CONCLUSIONS: ETV4 promoted hepatic inflammation and HCC by activating transcription of TNF-α and MAPK11. Both the ETV4/TNF-α and ETV4/MAPK11 axes represented two potential therapeutic targets for highly associated hepatic inflammation and HCC. ETV4+TNF-α were potential prognostic markers for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Hepáticas/patologia , Fatores de Transcrição , Inflamação , Proteínas Proto-Oncogênicas c-ets/genética
4.
FASEB J ; 37(4): e22871, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929160

RESUMO

Hepatitis B virus (HBV) is one of the important risk factors in inducing the occurrence and development of liver cancer, while the mechanism has not been fully clarified. In this study, we found decorin (DCN) was significantly reduced in HBV transgenic cell line HepG2-4D14 compared to HepG2. The data from hepatocellular carcinoma (HCC) patients indicated that the level of DCN mRNA was significantly lower in tumor tissues than healthy control and positively correlated with the survival of HCC patients. We revealed that HBV HBx can inhibit the transcription of DCN by blocking p53 activity. Functional analysis demonstrated that overexpression of DCN substantially inhibits the proliferation of HCC cells, while knockdown of DCN enhances the proliferation of HCC cells. It is known that DCN could competitively bind to c-Met to inhibit HGF/c-Met signaling pathway to inhibit the development of HCC. Therefore, we screened the novel antitumor peptides derived from DCN based on the sequence of DCN and the complex structure of HGF/c-Met with virtual screening and identified a set of DCN-derived peptides (DCN-Ps) which may competitively bind to c-Met. We found that 5 of peptides can reduce the proliferation and migration of HepG2 cells significantly. Among them, DCN-P#3 can inhibit the growth of HCC cells both in vitro and in vivo. In conclusion, we discovered that HBV HBx downregulates the expression of DCN, which in turn promotes the proliferation of hepatocytes and the development of HCC. We identified DCN-derived antitumor peptides which provides the candidates for developing novel drugs against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Decorina/genética , Decorina/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Células Hep G2 , Vírus da Hepatite B/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36515158

RESUMO

The development of targeted drugs allows precision medicine in cancer treatment and optimal targeted therapies. Accurate identification of cancer druggable genes helps strengthen the understanding of targeted cancer therapy and promotes precise cancer treatment. However, rare cancer-druggable genes have been found due to the multi-omics data's diversity and complexity. This study proposes deep forest for cancer druggable genes discovery (DF-CAGE), a novel machine learning-based method for cancer-druggable gene discovery. DF-CAGE integrated the somatic mutations, copy number variants, DNA methylation and RNA-Seq data across ˜10 000 TCGA profiles to identify the landscape of the cancer-druggable genes. We found that DF-CAGE discovers the commonalities of currently known cancer-druggable genes from the perspective of multi-omics data and achieved excellent performance on OncoKB, Target and Drugbank data sets. Among the ˜20 000 protein-coding genes, DF-CAGE pinpointed 465 potential cancer-druggable genes. We found that the candidate cancer druggable genes (CDG) are clinically meaningful and divided the CDG into known, reliable and potential gene sets. Finally, we analyzed the omics data's contribution to identifying druggable genes. We found that DF-CAGE reports druggable genes mainly based on the copy number variations (CNVs) data, the gene rearrangements and the mutation rates in the population. These findings may enlighten the future study and development of new drugs.


Assuntos
Genômica , Neoplasias , Humanos , Genômica/métodos , Multiômica , Variações do Número de Cópias de DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Aprendizado de Máquina , Estudos de Associação Genética
6.
Virol J ; 19(1): 40, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248059

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant threats to the global swine industry. It is of great importance to understand viral-host interactions to develop novel antiviral strategies. Long non-coding RNAs (lncRNAs) have emerged as critical factors regulating host antiviral immune responses. However, lncRNAs participating in virus-host interactions during PRRSV infection remain largely unexplored. METHOD: RNA transcripts of porcine alveolar macrophages (PAMs) infected with two different PRRSV strains, GSWW/2015 and VR2332, at 24 h post-infection were sequenced by high-throughput sequencing. Four programs namely, CNCI, CPC, PFAM, and phyloCSF, were utilized to predict the coding potential of transcripts. mRNAs co-localized or co-expressed with differentially expressed lncRNAs were considered as their targets. Fuction of lncRNAs was predicted by GO and KEGG analysis of their target mRNAs. The effect of LNC_000397 on PRRSV replication was validated by knockdown its expression using siRNA. Target genes of LNC_000397 were identified by RNA-Sequencing and validated by RT-qPCR. RESULT: In this study, we analyzed lncRNA and mRNA expression profiles of PRRSV GSWW/2015 and VR2332 infected porcine alveolar macrophages. A total of 1,147 novel lncRNAs were characterized, and 293 lncRNAs were differentially expressed. mRNAs co-localized and co-expressed with lncRNAs were enriched in pathogen-infection-related biological processes such as Influenza A and Herpes simplex infection. Functional analysis revealed the lncRNA, LNC_000397, which was up-regulated by PRRSV infection, negatively regulated PRRSV replication. Knockdown of LNC_000397 significantly impaired expression of antiviral ISGs such as MX dynamin-like GTPase 1 (MX1), ISG15 Ubiquitin-like modifier (ISG15), and radical S-adenosyl methionine domain containing 2 (RSAD2). CONCLUSIONS: LNC_000397 negatively regulated PRRSV replication by inducing interferon-stimulated genes (ISGs) expression. Our study is the first report unveiling the role of host lncRNA in regulating PRRSV replication, which might be beneficial for the development of novel antiviral therapeutics.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Animais , Antivirais/metabolismo , Interferons/metabolismo , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Replicação Viral
7.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830378

RESUMO

Hepatitis B virus (HBV) infection is closely related to hepatocellular carcinoma (HCC) development. To investigate the mechanism of HBV causing HCC, we previously analyzed the transcription of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells and identified a subset of long noncoding RNAs (lncRNAs) differentially expressed between them. In this study, we focus on lncRNA LINC01010, as it is significantly downregulated in HepG2-4D14 cells and in liver tissues of HCC patients, and positively correlated with survival. We found that HBV-encoded HBx can reduce the transcription of LINC01010. Functional analysis showed that the overexpression of LINC01010 inhibits proliferation, migration and invasion of HepG2 cells while the knockdown of LINC01010 promotes these processes. By taking the approach of RNA immunoprecipitation (RIP) and mass spectrometry, we identified that LINC01010 can interact with vimentin. Further studies demonstrated that LINC01010 negatively affects the vimentin network extension and causes more rapid subunit exchange and lower stability of vimentin filaments. In addition, LINC01010 can reduce the amount of insoluble vimentin within cells, which suggests that LINC01010 interfers with vimentin polymerization. These data indicate that LINC01010 can inhibit the assembly of vimentin filament. Thus, we revealed that HBV HBx-downregulated LINC01010, which suppresses cell proliferation and migration by negatively regulating the formation of vimentin filament. Taken together, LINC01010 is a potential tumor suppressor that may restrain HBV-related HCC development.


Assuntos
Carcinoma Hepatocelular/genética , Hepatite B/genética , RNA Longo não Codificante/genética , Transativadores/genética , Vimentina/genética , Proteínas Virais Reguladoras e Acessórias/genética , Idoso , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Células Hep G2 , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade
8.
FASEB J ; 35(5): e21529, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813778

RESUMO

To identify hepatitis B virus (HBV)-related lncRNA(s), we previously examined the transcription profiles of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells by RNA deep sequencing and identified 38 upregulated long noncoding RNAs (lncRNAs). In the present study, the lncRNA MAFG-AS1 is investigated in detail because its gene is located adjacent to the MAFG gene, which is an important transcription factor involved in cell proliferation. The level of MAFG-AS1 is significantly higher in HCC tissue than in nontumor tissues. TCGA data show that the expression level of MAFG-AS1 is negatively correlated with survival of HCC patients. GEO cohort data show that compared with healthy tissues, the expression level of MAFG-AS1 is significantly higher in HBV-infected liver tissues. Real-time PCR and luciferase reporter assay data show that HBx can enhance the transcription of MAFG-AS1. Gain-of-function and loss-of-function experiments indicate that MAFG-AS1 promotes proliferation, migration, and invasion of HCC cells. Tumor formation assay results demonstrate that knockdown of MAFG-AS1 significantly inhibits cell proliferation in nude mice. Furthermore, MAFG-AS1 enhances the transcription of adjacent MAFG via E2F1. Additionally, MAFG-AS1 interacts with three subunits (MYH9, MYL12B, and MYL6) of nonmuscle myosin IIA (NM IIA). Knockdown of MAFG-AS1 inhibits ATPase activity of MYH9, interaction of NM IIA subunits, and cell cycle progression. Thus, the lncRNA MAFG-AS1 is upregulated by HBV and promotes proliferation and migration of HCC cells. Our findings suggest that MAFG-AS1 is a potential oncogene that may contribute to HBV-related HCC development.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição MafG/metabolismo , Miosina não Muscular Tipo IIA/química , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator de Transcrição MafG/antagonistas & inibidores , Fator de Transcrição MafG/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Oligonucleotídeos Antissenso/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética
9.
Sci Rep ; 7(1): 4952, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694521

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a major threat to the global swine industry and causes tremendous economic losses. Its causative agent, porcine reproductive and respiratory syndrome virus (PRRSV), primarily infects immune cells, such as porcine alveolar macrophages and dendritic cells. PRRSV infection results in immune suppression, antibody-dependent enhancement, and persistent infection. Highly pathogenic strains in China cause high fever and severe inflammatory responses in the lungs. However, the pathogenesis of PRRSV is still not fully understood. In this study, we analysed the long noncoding RNA (lncRNA) and mRNA expression profiles of the HP-PRRSV GSWW15 and the North American strain FL-12 in infected porcine alveolar macrophages (PAMs) at 12 and 24 hours post-infection. We predicted 12,867 novel lncRNAs, 299 of which were differentially expressed after viral infection. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses of the genes adjacent to lncRNAs showed that they were enriched in pathways related to viral infection and immune response, indicating that lncRNAs might play regulatory roles in virus-host interactions. Our study provided information about lncRNAs in the porcine immune system and offers new insights into the pathogenic mechanism of PRRSV infection and novel antiviral therapy development.


Assuntos
Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Animais , Células Cultivadas , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Macrófagos Alveolares/química , Macrófagos Alveolares/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...