Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28664-28672, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787643

RESUMO

Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr2(Salophen)2(CH3OH)2), which is strategically designed as a precursor. Comprehensive pyrolysis mechanisms were thoroughly delineated by using coupled thermogravimetric analysis and mass spectrometry (TG-MS) alongside X-ray diffraction. Below 800 °C, the generation of a reducing atmosphere was noted, while continuous pyrolysis at temperatures exceeding 800 °C promoted highly oxidized CrO3 species with an elevated +6 oxidation state. The optimized catalyst pyrolyzed at 1000 °C (Cr2O3/CrO3/CrN@NCs-1000) demonstrated remarkable OER activity with a low overpotential of 290 mV in 1 M KOH and excellent stability. Further density functional theory (DFT) calculations revealed a much smaller reaction energy barrier of CrO3 than the low oxidation state species for OER reactivity. This work reveals fresh strategies for rationally engineering chromium-based electrocatalysts and overcoming intrinsic roadblocks to enable efficient OER catalysis through a deliberate oxidation state and compositional tuning.

2.
Chem Sci ; 15(20): 7689-7697, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784754

RESUMO

The pursuit of multifunctional electrocatalysts holds significant importance due to their comprehension of material chemistry. Amorphous materials are particularly appealing, yet they pose challenges in terms of rational design due to their structural disorder and thermal instability. Herein, we propose a strategy that entails the tandem (low-temperature/250-350 °C) pyrolysis of molecular clusters, enabling preservation of the local short-range structures of the precursor Schiff base nickel (Ni3[2(C21H24N3Ni1.5O6)]). The temperature-dependent residuals demonstrate exceptional activity and stability for at least three distinct electrocatalytic processes, including the oxygen evolution reaction (η10 = 197 mV), urea oxidation reaction (η10 = 1.339 V), and methanol oxidation reaction (1358 mA cm-2 at 0.56 V). Three distinct nickel atom motifs are discovered for three efficient electrocatalytic reactions (Ni1 and Ni1' are preferred for UOR/MOR, while Ni2 is preferred for OER). Our discoveries pave the way for the potential development of multifunctional electrocatalysts through disordered engineering in molecular clusters under tandem pyrolysis.

3.
Small ; 19(24): e2208276, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922744

RESUMO

Binary metal nickel-iron alloys have been proven to have great potential in oxygen evolution reaction (OER) electrocatalysis, but there are still certain challenges in how to construct more efficient nickel-iron alloy electrocatalysts and maximize their own advantages. In this work, a heterometallic nickel-iron cluster (L = C64 H66 Fe4 N8 Ni2 O19 ) of Schiff base (LH3  = 2-amino-1,3-propanediol salicylaldehyde) is designed as a precursor to explore its behavior in the pyrolysis process under inert atmosphere. The combination of TG-MS, morphology, and X-ray characterization techniques shows that the Schiff base ligands in the heterometallic clusters produces a strong reductive atmosphere during pyrolysis, which enable the two 3d metals Ni and Fe to form NiFe alloys. Moreover, Fe2 O3 /Fe0.64 Ni0.36 @Cs carbon nanomaterials are formed, in which Fe2 O3 /Fe0.64 Ni0.36 is the potential active material for OER. It is also found that the centrosymmetric structure of the heterometallic Schiff base precursor is potentially related to the formation of the Fe2 O3 /Fe0.64 Ni0.36 alloy@carbon structures. The Fe2 O3 /Fe0.64 Ni0.36 @C-800 provides 274 mV overpotential in 1 m KOH solution at 10 mA cm-2 in OER. This work provides an effective basis for further research on Schiff base bimetallic doping-derived carbon nanomaterials as excellent OER electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...