Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 142, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365664

RESUMO

BACKGROUND: Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples. RESULTS: Abundant bacteria that carry C-P lyase clusters were identified in plankton samples from freshwater Lakes Dianchi and Taihu during Microcystis bloom periods. Metagenomic analysis of 162 non-axenic laboratory strains of cyanobacteria (consortia cultures containing heterotrophic bacteria) showed that 20% (128/647) of high-quality bins from eighty of these consortia encode intact C-P lyase clusters, with an abundance ranging up to nearly 13%. Phycospheric bacterial phosphonate catabolism genes were expressed continually across bloom seasons, as demonstrated through metatranscriptomic analysis using sixteen field Microcystis aggregate samples. Coculturing experiments revealed that although Microcystis cultures did not catabolize methylphosphonate when axenic, they demonstrated sustained growth when cocultured with phosphonate-utilizing phycospheric bacteria in medium containing methylphosphonate as the sole source of phosphorus. CONCLUSIONS: The recruitment of heterotrophic phosphonate-degrading phycospheric bacteria by cyanobacteria is a hedge against phosphorus scarcity by facilitating phosphonate availability. Cyanobacterial consortia are likely primary contributors to aquatic phosphonate mineralization, thereby facilitating sustained cyanobacterial growth, and even bloom maintenance, in phosphate-deficient waters. Video Abstract.


Assuntos
Cianobactérias , Microcystis , Organofosfonatos , Microcystis/genética , Microcystis/metabolismo , Ecossistema , Organofosfonatos/metabolismo , Cianobactérias/genética , Fitoplâncton , Lagos/microbiologia , Fósforo/metabolismo
2.
Environ Pollut ; 147(2): 324-30, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-16828944

RESUMO

To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa - unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mgl(-1) copper sulfate treatment for 24h. Upon exposure to 0.25 mgl(-1) copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F(v)/F(m), ETR(max), and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis.


Assuntos
Sulfato de Cobre/toxicidade , Microcystis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A , Meios de Cultura , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Citometria de Fluxo/métodos , Fluorescência , Microcystis/fisiologia , Estresse Oxidativo/fisiologia , Fenótipo , Fotossíntese/fisiologia , Superóxido Dismutase/metabolismo , Microbiologia da Água
3.
Clin Chim Acta ; 348(1-2): 177-80, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15369752

RESUMO

BACKGROUND: A time-resolved fluorescence immunoassay (TRFIA), based on anti-microcystin-LR (MCLR) monoclonal antibodies (MAbs) and europium-labeled antimouse IgG conjugate, was first developed for microcystin detection. METHODS: Anti-MCLR MAbs were prepared by a standard method, and the attained MAbs showed a good cross reactivity with MCLR, MCRR and MCYR. The TRFIA was performed in an indirect competitive mode. The detection method of TRFIA was compared with indirect competitive enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). RESULTS: The TRFIA exhibited a typical sigmoidal response for MCLR at concentrations of 0.005-50 ng/ml, with a wide quantitative range between 0.01 and 10 ng/ml, indicating the broadest detective range and the most sensitive of all the methods for microcystins (MCs) detection. Additionally, the TRFIA maintained good reliability through its quantitative range, as evidenced by low coefficients of variation (1.6-12.2%). The toxin data of algal samples assayed from TRFIA were in the same range as those with ELISA and HPLC, implying that the method was reliable and practical for the detection of MCs. CONCLUSIONS: The TRFIA may offer a valuable alternative or a substitute for conventional ELISA for microcystin detection.


Assuntos
Peptídeos Cíclicos/análise , Animais , Anticorpos Monoclonais , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Fluorimunoensaio/métodos , Camundongos , Camundongos Endogâmicos BALB C , Microcistinas , Peptídeos Cíclicos/imunologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...