Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169252

RESUMO

Bioleaching technologies have been shown to be an environmentally friendly and economically beneficial tool for extracting metals from spent lithium-ion batteries (LIBs). However, conventional bioleaching methods have exhibited low efficiency in recovering metals from spent LIBs. Therefore, relied on the sustainability principle of using waste to treat waste, this study employed pyrite (FeS2) as an energy substance with reducing properties and investigated its effects in combination with elemental sulfur (S0) or FeSO4 on metals bioleaching from spent LIBs. Results demonstrated that the bioleaching efficiency was significantly higher in the leaching system constructed with FeS2 + S0, than in the FeS2 + FeSO4 or FeS2 system. When the pulp densities of FeS2, S0 and spent LIBs were 10 g L-1, 5 g L-1 and 10 g L-1, respectively, the leaching efficiency of Li, Ni, Co and Mn all reached 100%. Mechanistic analysis reveals that in the FeS2 + S0 system, the activity and acid-producing capabilities of iron-sulfur oxidizing bacteria were enhanced, promoting the generation of Fe (Ⅱ) and reducible sulfur compounds. Simultaneously, bio-acids were shown to disrupt the structure of the LIBs, thereby increasing the contact area between Fe (Ⅱ) and sulfur compounds containing high-valence metals. This effectively promoted the reduction of high-valence metals, thereby enhancing their leaching efficiency. Overall, the FeS2 + S0 bioleaching process constructed in this study, improved the leaching efficiency of LIBs while also effectively utilizing waste, providing technical support for the comprehensive and sustainable management of solid waste.


Assuntos
Ferro , Lítio , Sulfetos , Lítio/química , Metais , Enxofre , Compostos de Enxofre , Fontes de Energia Elétrica , Reciclagem
2.
J Hazard Mater ; 447: 130773, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641848

RESUMO

Despite the growing demand for resource recovery from spent lithium-ion batteries (LIBs) by bioleaching, low Co leaching efficiency has hindered the development and application of this technology. Therefore, a novel process was designed, combining gallic acid (GA) and mixed culture bioleaching (MCB), to enhance the removal of metals from spent LIBs. Results indicated that the GA + MCB process achieved 98.03% Co and 98.02% Li leaching from spent LIBs, simultaneously reducing the biotoxicity, phytotoxicity and leaching toxicity of spent LIBs under optimal conditions. The results of mechanism analysis demonstrated that functional microorganisms adapted to the leaching system through various strategies, including oxidative stress reduction, DNA damage repair, heavy metal resistance and biofilm formation, maintaining normal physiological activities and the continuous production of biological acid. The biological acid erodes the surface of waste LIBs, causing some Co and a large amount of Li to be released, while also increasing the contact area between GA and Co(III). Therefore, GA is beneficial for reducing insoluble Co(III), forming soluble Co(II). Finally, biological acid can effectively promote Co(II) leaching. Collectively, the results of this study provide valuable insight into the simultaneous enhancement of metal extraction and the mitigation of environmental pollution from spent LIBs.


Assuntos
Lítio , Reciclagem , Solubilidade , Metais , Fontes de Energia Elétrica
3.
Sci Total Environ ; 830: 154577, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304146

RESUMO

The recovery of metals from spent LiCoO2 batteries (SLBs) is essential to avoid resource wastage and the production of hazardous waste. However, the major challenge in regard to recovering metals from SLBs using traditional bioleaching is the low Co yield. To overcome this issue, a mixed culture of Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans was designed for use in SLBs leaching in this study. With the assistance of Fe2+ as a reductant, 99% of Co and 100% of Li were leached using the above mixed-culture bioleaching (MCB) process, thus solving the problem of low metal leaching efficiency from SLBs. Analysis of the underlying mechanism revealed that the effective extraction of metals from SLBs by the Fe2+-MCB process relied on Fe2+-releasing electrons to reduce refractory Co(III) to Co(II) that can be easily bioleached. Finally, the hazardous SLBs was transformed into a non-toxic material after treatment utilizing the Fe2+-MCB process. However, effective SLBs leaching was not achieved by the addition of Fe0 to the MCB system. Only 25% Co and 31% Li yields were obtained, as the addition of Fe0 caused acid consumption and bacterial apoptosis. Overall, this study revealed that reductants that cause acid consumption and harm bacteria should be ruled out for use in reductant-assisted bioleaching processes for extracting metals from SLBs.


Assuntos
Cobalto/isolamento & purificação , Lítio , Óxidos/química , Substâncias Redutoras , Bactérias , Cobalto/química , Fontes de Energia Elétrica , Estudos de Viabilidade , Íons , Ferro , Metais
4.
Sci Total Environ ; 806(Pt 1): 150234, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562759

RESUMO

Temperature is considered to be one of the main factors affecting bioleaching, but few studies have assessed the effects of diurnal temperature range (DTR) on the bioleaching process. This study investigates the effects of different bioleaching temperatures (30 and 40 °C) and DTR on the bioleaching of metal sulfide ores by microbial communities. The results showed that DTR had an obvious inhibitory effect on the bioleaching efficiency of the artificial microbial community, although this effect was mainly concentrated in the early and middle stages (0-18 days) of exposure, gradually decreasing until almost disappearing in the late stage (18-24 days). Extracellular polymeric substance (EPS) analysis showed that DTR did not change the composition of the EPS matrix (humic acid-like substances, polysaccharides and protein-like substances), but had a significant effect on the generative behavior of EPS, inhibiting the secretion of EPS during the early and middle stages of the bioleaching process. However, the continual increase in EPS secretion in the bioleaching system gradually reduced the adverse effects of DTR on mineral dissolution. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) analysis of the bioleached residue showed that DTR had no obvious effect on the mineralogical characteristics of sulfide ore. Therefore, in industrial sulfide ore bioleaching applications, in order to accelerate the artificial microbial community start-up process, temperature control measures should be increased in the bioleaching process to reduce the adverse effects of DTR on mineral dissolution.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Consórcios Microbianos , Minerais , Sulfetos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...