Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(22): 14742-14753, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770934

RESUMO

Transition metal single-atom catalysts (SACs) have been regarded as possible alternatives to platinum-based materials due to their satisfactory performance of the oxygen reduction reaction (ORR). By contrast, main-group metal elements are rarely studied due to their unfavorable surface and electronic states. Herein, a main-group Sn-based SAC with penta-coordinated and asymmetric first-shell ligands is reported as an efficient and robust ORR catalyst. The introduction of the vertical oxygen atom breaks the symmetric charge balance, modulating the binding strength to oxygen intermediates and decreasing the energy barrier for the ORR process. As expected, the prepared Sn SAC exhibits outstanding ORR activity with a high half-wave potential of 0.912 V (vs RHE) and an excellent mass activity of 13.1 A mgSn-1 at 0.850 V (vs RHE), which surpasses that of commercial Pt/C and most reported transition-metal-based SACs. Additionally, the reported Sn SAC shows excellent ORR stability due to the strong interaction between Sn sites and the carbon support with oxygen atom as the bridge. The excellent ORR performance of Sn SAC was also proven by both liquid- and solid-state zinc-air battery (ZAB) measurements, indicating its great potential in practical applications.

2.
J Colloid Interface Sci ; 625: 946-955, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35777101

RESUMO

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage. However, the notorious lithium polysulfides (LiPSs) shuttle effect and torpid redox kinetics hinder their practical application. Enhancing phase conversion efficiency and limiting the dissolution of LiPSs are critical for stabilizing Li-S batteries. Herein, sulfiphilic defective TiO2 nanoparticles (D-TiO2) were integrated into the lithiophilic N-doped porous carbon nanofiber membrane (D-TiO2@NPCNF) to construct interlayer for catalyzing the conversion of LiPSs. The D-TiO2@NPCNF provides hierarchical porous structure and large specific surface area, and the formed 3D conductive network accelerates the transport of electrons and ions. The dual-active sites (N and D-TiO2) enhance the interface conversion and chemisorption ability of LiPSs via forming "Li-N and Ti-S" bonds. Due to the structural advantage of the D-TiO2@NPCNF, the Li-S batteries exhibit excellent cycling stability (only 0.049% decay per cycle in 800cycles at 1.0C) and impressive specific capacity (608 mAh g-1 at 3.0C). This work is expected to deepen the comprehension of complex interphase conversion processes of LiPSs and provide novel ideas for the design of new interlayer materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...