Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(21): 8594-8603, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38718350

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) with ionophore-based polymer-sensitive membranes have been the major devices in wearable sweat sensors toward electrolyte analysis. However, the toxicity of ionophores in ion-selective membranes (ISMs), for example, valinomycin (K+ ion carrier), is a significant challenge, since the ISM directly contacts the skin during the tests. Herein, we report coating a hydrogel of graphene oxide-poly(vinyl alcohol) (GO-PVA) on the ISM to fabricate hydrogel-based SC-ISEs. The hydrogen bond interaction between GO sheets and PVA chains could enhance the mechanical strength through the formation of a cross-linking network. Comprehensive electrochemical tests have demonstrated that hydrogel-coated K+-SC-ISE maintains Nernstian response sensitivity, high selectivity, and anti-interference ability compared with uncoated K+-SC-ISE. A flexible hydrogel-based K+ sensing device was further fabricated with the integration of a solid-contact reference electrode, which has realized the monitoring of sweat K+ in real time. This work highlights the possibility of hydrogel coating for fabricating biocompatible wearable potentiometric sweat electrolyte sensors.

2.
Talanta ; 274: 125993, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579422

RESUMO

Current potentiometric Cu2+ sensors mostly rely on polymer-membrane-based solid-contact ion-selective electrodes (SC-ISEs) that constitute ion-selective membranes (ISM) and solid contact (SC) for respective ion recognition and ion-to-electron transduction. Herein, we report an ISM-free Cu2+-SC-ISE based on Cu-Mn oxide (Cu1.4Mn1.6O4) as a bifunctional SC layer. The starting point is simplifying complex multi-interfaces for Cu2+-SC-ISEs. Specifically, ion recognition and signal transduction have been achieved synchronously by an ion-coupled-electron transfer of crystal ion transport and electron transfer of Mn4+/3+ in Cu1.4Mn1.6O4. The proposed Cu1.4Mn1.6O4 electrode discloses comparable sensitivity, response time, high selectivity and stability compared with present ISM-based potentiometric Cu2+ sensors. In addition, the Cu1.4Mn1.6O4 electrode also exhibits near Nernstian responses toward Cu2+ in natural water background. This work emphasizes an ISM-free concept and presents a scheme for the development of potentiometric Cu2+ sensors.

3.
Small ; : e2312085, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342594

RESUMO

Developing high-performance lignin anti-corrosive waterborne epoxy (WEP) coatings is conducive to the advancement of environmentally friendly coatings and the value-added utilization of lignin. In this work, a functionalized biomass waterborne epoxy composite coating is prepared using quaternized sodium lignosulfonate (QLS) as a functional nanofiller for mild carbon steel protection. The results showed that QLS has excellent dispersion and interface compatibility within WEP, and its abundant phenolic hydroxyl, sulfonate, quaternary ammonium groups, and nanoparticle structure endowed the coating with excellent corrosion inhibition and superior barrier properties. The corrosion inhibition efficiency of 100 mg L-1 QLS in carbon steel immersed in a 3.5 wt% NaCl solution reached 95.76%. Furthermore, the coating maintained an impedance modulus of 2.29 × 106  Ω cm2 (|Z|0.01 Hz ) after being immersed for 51 days in the high-salt system. In addition, QLS imparted UV-blocking properties and thermal-oxygen aging resistance to the coating, as evidenced by a |Z|0.01 Hz of 1.04 × 107  Ω cm2 after seven days of UV aging while still maintaining a similar magnitude as before aging. The green lignin/WEP functional coatings effectively withstand the challenging outdoor environment characterized by high salt concentration and intense UV radiation, thereby demonstrating promising prospects for application in metal protection.

4.
Anal Chim Acta ; 1287: 342046, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182362

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) feature miniaturization and integration that have gained extensive attention in non-invasive wearable sweat electrolyte sensors. The state-of-the-art wearable SC-ISEs mainly use polyethylene terephthalate, gold and carbon nanotube fibers as flexible substrates but suffer from uncomfortableness, high cost and biotoxicity. Herein, we report carbon fiber-based SC-ISEs to construct a four-channel wearable potentiometric sensor for sweat electrolytes monitoring (Na+/K+/pH/Cl-). The carbon fibers were extracted from commercial cloth, of which the starting point is addressing the cost and reproducibility issues for flexible SC-ISEs. The bare carbon fiber electrodes exhibited reversible voltammetric and stable impedance performances. Further fabricated SC-ISEs based on corresponding ion-selective membranes disclosed Nernstian sensitivity and anti-interface ability toward both ions and organic species in sweat. Significantly, these carbon fiber-based SC-ISEs revealed high reproducibility of standard potentials between normal and bending states. Finally, a textile-based sensor was integrated with a solid-contact reference electrode, which realized on-body sweat electrolytes analysis. The results displayed high accuracy compared with ex-situ tests by ion chromatography. This work highlights carbon fiber-based multichannel wearable potentiometric ion sensors with low cost, biocompatibility and reproducibility.

5.
Talanta ; 262: 124623, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244238

RESUMO

Here, we propose a fast and sensitive coulometric signal transduction method for ion-selective electrodes (ISEs) by utilizing a two-compartment cell. A potassium ion-selective electrode (K+-ISE) was connected as reference electrode (RE) and placed in the sample compartment. A glassy carbon (GC) electrode coated with poly(3,4-ethylenedioxythiophene) (GC/PEDOT), or reduced graphene oxide (GC/RGO), was connected as working electrode (WE) and placed in the detection compartment together with a counter electrode (CE). The two compartments were connected with an Ag/AgCl wire. The measured cumulated charge was amplified by increasing the capacitance of the WE. The observed slope of the cumulated charge with respect to the change of the logarithm of the K+ ion activity was linearly proportional to the capacitance of the GC/PEDOT and GC/RGO, estimated from impedance spectra. Furthermore, the sensitivity of the coulometric signal transduction using a commercial K+-ISE with internal filling solution as RE and GC/RGO as WE allowed to decrease the response time while still being able to detect a 0.2% change in K+ concentration. The coulometric method utilizing a two-compartment cell was found to be feasible for the determination of K+ concentrations in serum. The advantage of this two-compartment approach, compared to the coulometric transduction described earlier, was that no current passed through the K+-ISE that was connected as RE. Therefore, current-induced polarization of the K+-ISE was avoided. Furthermore, since the GCE/PEDOT and GCE/RGO (used as WE) had a low impedance, the response time of the coulometric response decreased from minutes to seconds.

6.
Membranes (Basel) ; 13(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37103803

RESUMO

The level of hydrogen ions in sweat is one of the most important physiological indexes for the health state of the human body. As a type of two-dimensional (2D) material, MXene has the advantages of superior electrical conductivity, a large surface area, and rich functional groups on the surface. Herein, we report a type of Ti3C2Tx-based potentiometric pH sensor for wearable sweat pH analysis. The Ti3C2Tx was prepared by two etching methods, including a mild LiF/HCl mixture and HF solution, which was directly used as the pH-sensitive materials. Both etched Ti3C2Tx showed a typical lamellar structure and exhibited enhanced potentiometric pH responses compared with a pristine precursor of Ti3AlC2. The HF-Ti3C2Tx disclosed the sensitivities of -43.51 ± 0.53 mV pH-1 (pH 1-11) and -42.73 ± 0.61 mV pH-1 (pH 11-1). A series of electrochemical tests demonstrated that HF-Ti3C2Tx exhibited better analytical performances, including sensitivity, selectivity, and reversibility, owing to deep etching. The HF-Ti3C2Tx was thus further fabricated as a flexible potentiometric pH sensor by virtue of its 2D characteristic. Upon integrating with a solid-contact Ag/AgCl reference electrode, the flexible sensor realized real-time monitoring of pH level in human sweat. The result disclosed a relatively stable pH value of ~6.5 after perspiration, which was consistent with the ex situ sweat pH test. This work offers a type of MXene-based potentiometric pH sensor for wearable sweat pH monitoring.

7.
Chem Asian J ; 17(24): e202200731, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36208291

RESUMO

Single-entity collisional electrochemistry (SECE) can capture physicochemical information at the single entity level. In the present work, we systematically studied in-situ generation and detection of single anionic ionosomes via SECE combined with a miniaturized interface between two immiscible electrolyte solutions (ITIES). Ionosome is an ionic-bilayer encapsulated nanoscopic water cluster/droplet that carries a net charge. Discrete spiky ionic currents were observed upon collisions/fusions of individual F- or Cl- -ionosomes with a positively polarized micro-ITIES. This fusion process was proved to follow the bulk electrolysis model. With this method, some essential factors such as concentration and charge density of the hydrated anions, and the interfacial area, were revealed. It demonstrates that anionic ionosomes share a common theoretical framework with their counterparts (i. e., cationic ionosomes, like Li+ -ionosomes). This work will spur the advancements in a myriad of fields, including such as the colloid and interface science, micro- and/or nanoscale electrochemistry, and electrophysiology and brain sciences.


Assuntos
Água , Eletroquímica , Cátions , Ânions
8.
Membranes (Basel) ; 12(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135922

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec-1 ranging from 10 µM to 0.1 M with a detection limit of 3.2 µM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions.

9.
Anal Chem ; 94(29): 10487-10496, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839308

RESUMO

The determination of ammonium ions (NH4+) is of significance to environmental, agriculture, and human health. Potentiometric NH4+ sensors based on solid-contact ion selective electrodes (SC-ISEs) feature point-of-care testing and miniaturization. However, the state-of-the-art SC-ISEs of NH4+ during the past 20 years strongly rely on the organic ammonium ionophore-based ion selective membrane (ISM), typically by nonactin for the NH4+ recognition. Herein, we report a Prussian blue analogue of copper(II)-hexacyanoferrate (CuHCF) for an ISM-free potentiometric NH4+ sensor without using the ionophores. CuHCF works as a bifunctional transducer that could realize the ion-to-electron transduction and NH4+ recognition. CuHCF exhibits competitive analytical performances regarding traditional nonactin-based SC-ISEs of NH4+, particularly for the selectivity toward K+. The cost and preparation process have been remarkably reduced. The theoretical calculation combined with electrochemical tests further demonstrate that relatively easier intercalation of NH4+ into the lattices of CuHCF determines its selectivity. This work provides a concept of the ISM-free potentiometric NH4+ sensor beyond the nonactin ionophore through a CuHCF bifunctional transducer.


Assuntos
Compostos de Amônio , Eletrodos Seletivos de Íons , Ferrocianetos , Humanos , Ionóforos , Macrolídeos , Transdutores
10.
Membranes (Basel) ; 12(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35629830

RESUMO

Wearable sensors reflect the real-time physiological information and health status of individuals by continuously monitoring biochemical markers in biological fluids, including sweat, tears and saliva, and are a key technology to realize portable personalized medicine. Flexible electrochemical pH sensors can play a significant role in health since the pH level affects most biochemical reactions in the human body. pH indicators can be used for the diagnosis and treatment of diseases as well as the monitoring of biological processes. The performances and applications of wearable pH sensors depend significantly on the properties of the pH-sensitive materials used. At present, existing pH-sensitive materials are mainly based on polyaniline (PANI), hydrogen ionophores (HIs) and metal oxides (MOx). In this review, we will discuss the recent progress in wearable pH sensors based on these sensitive materials. Finally, a viewpoint for state-of-the-art wearable pH sensors and a discussion of their existing challenges are presented.

11.
ACS Meas Sci Au ; 2(6): 568-575, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36785773

RESUMO

Solid-contact ion-selective electrodes are a type of ion measurement devices that have been focused in wearable biotechnology based on the features of miniaturization and integration. However, the solid-contact reference electrodes (SC-REs) remain relatively less focused compared with numerous working (or indicator) electrodes. Most SC-REs in wearable sensors rely on Ag/AgCl reference electrodes with solid electrolytes, for example, the hydrophilic electrolyte salts in polymer matrix, but face the risk of electrolyte leakage. Herein, we report a type of SC-REs based on the silver/silver tetraphenylborate (Ag/AgTPB) organic insoluble electrode. The SC-RE consists of a Ag substrate, a solid contact (AgTPB), and a plasticized poly(vinyl chloride) (PVC) membrane containing the hydrophobic organic salt of tetrabutylammonium tetraphenylborate (TBATPB). The potentiometric measurements demonstrated that the SC-RE of Ag/AgTPB/PVC-TBATPB showed a reproducible standard potential in various electrolytes and disclosed high long-term stability. This SC-RE was further fabricated on a flexible substrate and integrated into all-solid-state wearable potentiometric ion sensor for sweat Cl- monitoring.

12.
Membranes (Basel) ; 11(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34940460

RESUMO

Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl- with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl-, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl- sensor was fabricated for on-body monitoring the concentration of sweat Cl- to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.

13.
Anal Chem ; 93(21): 7588-7595, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008950

RESUMO

The solid-contact ion-selective electrodes (SC-ISEs) are a type of potentiometric analytical device with features of rapid response, online analysis, and miniaturization. The state-of-the-art SC-ISEs are composed of a solid-contact (SC) layer and an ion-selective membrane (ISM) layer with respective functions of ion-to-electron transduction and ion recognition. Two challenges for the SC-ISEs are the water-layer formation at the SC/ISM phase boundary and the leaking of ISM components, which are both originated from the ISM. Herein, we report a type of SC-ISE based on classic Li-ion battery materials as the SC layer without using the ISM for potentiometric lithium-ion sensing. Both LiFePO4- and LiMn2O4-based SC-ISEs display good Li+ sensing properties (sensitivity, selectivity, and stability). The proposed LiFePO4 electrode exhibits comparable sensitivity and a linear range to conventional SC-ISEs with ISM. Owing to the nonexistence of ISM, the LiFePO4 electrode displays high potential stability. Besides, the LiMn2O4 electrode shows a Nernstian response toward Li+ sensing in a human blood serum solution. This work emphasizes the concept of non-ISM-based SC-ISEs for potentiometric ion sensing.


Assuntos
Eletrodos Seletivos de Íons , Lítio , Fontes de Energia Elétrica , Humanos , Íons , Potenciometria
14.
Biosens Bioelectron ; 178: 113010, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493894

RESUMO

Being closely associated with a variety of physiological and pathological processes, matrix metalloproteinases (MMPs) are useful as potential targets for drug therapy and informative markers for disease diagnosis. On the basis of the electrochemically induced grafting of ferrocenyl polymers and the proteolytic cleavage of recognition peptide, a novel electrochemical sensor is presented in this work for the highly specific interrogation of MMP activities at ultralow levels. The recognition peptide, to be immobilized via the N-terminus, is free of carboxyl group. The presence of the target MMP would cleave the end-tethered recognition peptide, generating a free carboxyl group at the C-terminus of the rest fragment. To be used as the reversible addition-fragmentation chain-transfer (RAFT) agent, the dithiobenzoate, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD), can therefore be tethered via the carboxylate-Zr(IV)-carboxylate chemistry. Subsequently, the grafting of ferrocenyl polymers through electrochemically induced RAFT (eRAFT) polymerization of ferrocenylmethyl methacrylate (FcMMA) would recruit a large quantity of Fc redox reporters on electrode surface. With benefits from the excellent specificity of the enzyme-substrate recognition, the presented cleavage-based sensor is highly selective. Under optimal conditions, the detection limit in the presence of MMP-2 as the model target can be as low as 0.27 pg mL-1, with a linear range from 1 pg mL-1 to 1 ng mL-1. Furthermore, its applicability in the interrogation of MMP activity in complex serum samples and the screening of MMP inhibitors is satisfactory. The presented cleavage-based electrochemical MMP sensor is easy to fabricate and low-cost, thus showing great promise in drug discovery and disease diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Metaloproteinases da Matriz , Eletrodos , Metaloproteinases da Matriz/análise , Metaloproteinases da Matriz/metabolismo , Polímeros
15.
Anal Chem ; 92(24): 15982-15988, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33225684

RESUMO

As a single-chain glycoprotein with endopeptidase activity, the prostate-specific antigen (PSA) is valuable as an informative serum marker in diagnosing, staging, and prognosis of prostate cancer. In this report, an electrochemical biosensor based on the target-induced cleavage of a specific peptide substrate (PSA peptide) is designed for the highly selective detection of PSA at the femtomolar level, using electrochemically controlled atom transfer radical polymerization (eATRP) as a method for signal amplification. The PSA peptides, without free carboxyl sites, are attached to the gold surface via the N-terminal cysteine residue. The target-induced cleavage of PSA peptides results in the generation of carboxyl sites, to which the alkyl halide initiator α-bromophenylacetic acid (BPAA) is linked via the Zr(IV) linkers. Subsequently, the potentiostatic eATRP of ferrocenylmethyl methacrylate (FcMMA, as the monomer) leads to the surface-initiated grafting of high-density ferrocenyl polymers. As a result, a large amount of Fc redox tags can be recruited for signal amplification, through which the limit of detection (LOD) for PSA can be down to 3.2 fM. As the recognition element, the PSA peptide is easy to synthesize, chemically and thermally stable, and low-cost. Without the necessity of enzyme or nanoparticle labels, the eATRP-based amplification method is easy to operate and low-cost. Results also show that the cleavage-based electrochemical PSA biosensor is highly selective and applicable to PSA detection in complex biological samples. In view of these merits, the integration of the eATRP-based amplification method into cleavage-based recognition is believed to hold great promise for the electrochemical detection of PSA in clinical applications.


Assuntos
Técnicas Biossensoriais/métodos , Limite de Detecção , Polimerização , Antígeno Prostático Específico/análise , Técnicas Biossensoriais/economia , Custos e Análise de Custo , Eletroquímica , Ouro/química , Humanos , Metacrilatos/química , Antígeno Prostático Específico/química , Fatores de Tempo
16.
ACS Sens ; 5(9): 2834-2842, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854495

RESUMO

Wearable potentiometric ion sensors are attracting attention for real-time ion monitoring in biological fluids. One of the key challenges lies in keeping the analytical performances under a stretchable state. Herein, we report a highly stretchable fiber-based ion-selective electrode (ISE) prepared by coating an ion-selective membrane (ISM) on a stretchable gold fiber electrode. The fiber ISE ensures high stretchability up to 200% strain with only 2.1% increase in resistance of the fiber electrode. Owing to a strong attachment between the ISM and gold fiber electrode substrate, the ISE discloses favorable stability and potential repeatability. The Nernst slope of the ion response fluctuates from 59.2 to 57.4 mV/dec between 0 and 200% strain. Minor fluctuation of the intercept (E0) (±4.97 mV) also results. The ISE can endure 1000 cycles at the maximum stretch. Sodium, chloride, and pH fiber sensors were fabricated and integrated into a hairband for real-time analysis of human sweat. The result displays a high accuracy compared with ex situ analysis. The integrated sensors were calibrated before and just after on-body measurements, and they offer reliable results for sweat analysis.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Eletrodos , Ouro , Humanos , Potenciometria
17.
Biosens Bioelectron ; 165: 112358, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729491

RESUMO

As one of the most important proteolytic enzymes, trypsin is useful as a reliable and specific biomarker for the diagnosis of pancreatitis and other pathological conditions. In this paper, a novel signal-on electrochemical biosensor based on the use of electrochemically controlled grafting of polymers as an amplification strategy is described for the ultrasensitive assay of trypsin activity. The carboxyl-group-free peptide, serving as the substrate for the recognition of trypsin, is first immobilized via its N-terminus. The tryptic cleavage of peptide substrate can generate a free carboxyl group at the C-terminus of the truncated peptide, to which through the carboxylate-Zr(IV)-carboxylate linkage the carboxyl-group-containing initiator for atom transfer radical polymerization (ATRP) can be conjugated. The subsequent surface-initiated grafting of polymers (SI-GOP) based on electrochemically controlled ATRP (eATRP), with ferrocenylmethyl methacrylate (FcMMA) as the monomer, can bring a large amount of Fc tags to electrode surface, resulting in the generation of a very high detection signal. The eATRP-based SI-GOP is easy to operate and low-cost as an amplification strategy. Under optimal conditions, the detection limit for trypsin activity can be down to 0.016 mU mL-1 (~2.68 pM or ~0.064 ng mL-1). As the current signal increases with trypsin activity, this trypsin biosensor is less susceptible to false positives due to the signal-on mode. Moreover, it is highly selective and applicable to inhibitor screening and the assay of trypsin activity in the presence of complex biological matrices. Taking together, this electrochemical trypsin biosensor may hold great potential in diagnostic applications.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Polimerização , Polímeros , Tripsina
18.
Membranes (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585903

RESUMO

Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.

19.
Small ; 16(19): e1907670, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32307886

RESUMO

Metallic selenides have been widely investigated as promising electrode materials for metal-ion batteries based on their relatively high theoretical capacity. However, rapid capacity decay and structural collapse resulting from the larger-sized Na+ /K+ greatly hamper their application. Herein, a bimetallic selenide (MoSe2 /CoSe2 ) encapsulated in nitrogen, sulfur-codoped hollow carbon nanospheres interconnected reduced graphene oxide nanosheets (rGO@MCSe) are successfully designed as advanced anode materials for Na/K-ion batteries. As expected, the significant pseudocapacitive charge storage behavior substantially contributes to superior rate capability. Specifically, it achieves a high reversible specific capacity of 311 mAh g-1 at 10 A g-1 in NIBs and 310 mAh g-1 at 5 A g-1 in KIBs. A combination of ex situ X-ray diffraction, Raman spectroscopy, and transmission electron microscopy tests reveals the phase transition of rGO@MCSe in NIBs/KIBs. Unexpectedly, they show quite different Na+ /K+ insertion/extraction reaction mechanisms for both cells, maybe due to more sluggish K+ diffusion kinetics than that of Na+ . More significantly, it shows excellent energy storage properties in Na/K-ion full cells when coupled with Na3 V2 (PO4 )2 O2 F and PTCDA@450 °C cathodes. This work offers an advanced electrode construction guidance for the development of high-performance energy storage devices.

20.
Anal Chem ; 92(4): 3470-3476, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31994866

RESUMO

As a serine protease, thrombin is a pivotal component in coagulation cascade and has been frequently screened as an informative biomarker for the diagnosis of coagulation disorder-related diseases. Herein, a "signal-on" electrochemical biosensor is described for the highly sensitive and selective detection of thrombin activity, by exploiting a thrombin-specific substrate peptide (Tb peptide) as the recognition element and reversible addition-fragmentation chain transfer (RAFT) polymerization for signal amplification. Specifically, the carboxyl-group-free Tb peptides are self-assembled onto gold electrode surface via the N-terminal cysteine residue and are used for the specific recognition of thrombin molecules. After the proteolytic cleavage of the Tb peptides, the carboxyl-group-containing RAFT agents (4-cyano-4-(phenylcarbonothioylthio)pentanoic acid, CPAD) are tethered to the free carboxyl termini of the truncated peptide fragments via the carboxylate-zirconium-carboxylate chemistry. The subsequent RAFT polymerization leads to the grafting of a polymer chain from each proteolytically cleaved site, enabling the recruitment of a large number of electroactive ferrocene (Fc) tags to the electrode surface when ferrocenylmethyl methacrylate (FcMMA) is used as the monomer. Under optimal conditions, the detection limit of the described thrombin biosensor is as low as 2.7 µU mL-1 (∼0.062 pM), with a linear response over the range of 10-250 µU mL-1 (R2 = 0.997). Results also indicate that the biosensor is highly selective and applicable to the detection of thrombin activity in complex serum samples and the screening of thrombin inhibitors. The described biosensor is low-cost and relatively easy in preparation and thus shows great promise for the highly sensitive and selective detection of thrombin activity.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Trombina/metabolismo , Eletrodos , Ouro/química , Humanos , Tamanho da Partícula , Polimerização , Propriedades de Superfície , Trombina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...