Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 148-155, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100971

RESUMO

Healable electronic skins, an essential component for future soft robotics, implantable bioelectronics, and smart wearable systems, necessitate self-healable and pliable materials that exhibit functionality at intricate interfaces. Although a plethora of self-healable materials have been developed, the fabrication of highly conformal biocompatible functional materials on complex biological surfaces remains a formidable challenge. Inspired by regenerative properties of skin, we present the self-assembled transfer-printable liquid metal epidermis (SALME), which possesses autonomous self-healing capabilities at the oil-water interface. SALME comprises a layer of surfactant-grafted liquid metal nanodroplets that spontaneously assemble at the oil-water interface within a few seconds. This unique self-assembly property facilitates rapid restoration (<10 s) of SALME following mechanical damage. In addition to its self-healing ability, SALME exhibits excellent shear resistance and can be seamlessly transferred to arbitrary hydrophilic/hydrophobic curved surfaces. The transferred SALME effectively preserves submicron-scale surface textures on biological substrates, thus displaying tremendous potential for future epidermal bioelectronics.

2.
Langmuir ; 38(47): 14475-14484, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36383709

RESUMO

Gallium-based liquid metals form alloys with a melting point close to or below room temperature. On the surface of these liquid metals, a thin oxide skin is formed once in contact with oxygen, and this oxide skin can be leveraged to stabilize liquid metal micro- and nanodroplets in a liquid. During sonication and storage of these droplets in aqueous solution, gallium oxide hydroxide (GaOOH) forms on these droplets, and given enough time or treatment with heat, a full shape transition and dealloying are observed. In this article, we show that GaOOH can be grown at room temperature and that the growth is dependent on both the local environment and temperature. GaOOH growth on liquid metal microdroplets located at the air/water interface is considerably faster than in the bulk phase. Interestingly, hydrolysis to GaOOH is hampered and stops at 15 °C in bulk water after 6 h. In contrast, hydrolysis commences even at 15 °C for liquid metal microdroplets located at the air/water interface, and full surface coverage is obtained after around 24 h (compared to 12 h at 25 °C at the air/water interface). The X-ray photoelectron spectroscopy (XPS) measurement suggests that gallium oxide is dissolved and Ga(OH)3 is formed as a precursor that reacts in a downstream reaction toward GaOOH. This improved understanding of the GaOOH formation can be leveraged to control the liquid metal micro- and nanodroplet shape and composition (i.e., for biomedical applications).

3.
ACS Appl Mater Interfaces ; 14(37): 42744-42756, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36068651

RESUMO

Adhesion and spreading of liquid metals (LMs) on substrates are essential steps for the generation of flexible electronics and thermal management devices. However, the controlled deposition is limited by the high surface tension and peculiar wetting and adhesion behavior of LMs. Herein, we introduce gelatin-regulated LM droplet deposition and sintering (GLMDDS), for the upscalable production of conformally adhesive, solidlike, yet transient LM thin films and patterns on diverse substrates. This method involves four steps: homogeneous deposition of LM microdroplets, gelation of the LM-gelatin solution, toughening of the gelatin hydrogel by solvent displacement, and peeling-induced sintering of LM microdroplets. The LM thin film exhibits a three-layer structure, comprising an LM microdroplet-embedded tough organohydrogel adhesion layer, a continuous LM layer, and an oxide skin. The composite exhibits high stretchability and mechanical robustness, conformal adhesion to various substrates, high conductivity (4.35 × 105 S·m-1), and transience (86% LM recycled). Large-scale deposition (i.e., 5.6 dm2) and the potential for patterns on diverse substrates demonstrate its upscalability and broad suitability. Finally, the LM thin films and patterns are applied for flexible and wearable devices, i.e., pressure sensors, heaters, human motion tracking devices, and thermal management devices, illustrating the broad applicability of this strategy.

4.
Polymers (Basel) ; 14(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683935

RESUMO

Liquid metal (LM)-polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels-Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.

5.
Gels ; 8(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35735675

RESUMO

Artificial shape-morphing hydrogels are emerging toward various applications, spanning from electronic skins to healthcare. However, the low freezing and drying tolerance of hydrogels hinder their practical applications in challenging environments, such as subzero temperatures and arid conditions. Herein, we report on a shape-morphing system of tough organohydrogels enabled by the spatially encoded rigid structures and its applications in conformal packaging of "island-bridge" stretchable electronics. To validate this method, programmable shape morphing of Fe (III) ion-stiffened Ca-alginate/polyacrylamide (PAAm) tough organohydrogels down to -50 °C, with long-term preservation of their 3D shapes at arid or even vacuum conditions, was successfully demonstrated, respectively. To further illustrate the potency of this approach, the as-made organohydrogels were employed as a material for the conformal packaging of non-stretchable rigid electronic components and highly stretchable liquid metal (galinstan) conductors, forming a so-called "island-bridge" stretchable circuit. The conformal packaging well addresses the mechanical mismatch between components with different elastic moduli. As such, the as-made stretchable shape-morphing device exhibits a remarkably high mechanical durability that can withstand strains as high as 1000% and possesses long-term stability required for applications under challenging conditions.

6.
Nat Commun ; 13(1): 358, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042877

RESUMO

Soft electronics are rising electronic technologies towards applications spanning from healthcare monitoring to medical implants. However, poor adhesion strength and significant mechanical mismatches inevitably cause the interface failure of devices. Herein we report a self-adhesive conductive polymer that possesses low modulus (56.1-401.9 kPa), high stretchability (700%), high interfacial adhesion (lap-shear strength >1.2 MPa), and high conductivity (1-37 S/cm). The self-adhesive conductive polymer is fabricated by doping the poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) composite with a supramolecular solvent (ß-cyclodextrin and citric acid). We demonstrated the solution process-based fabrication of self-adhesive conductive polymer-based electrodes for various soft devices, including alternating current electroluminescent devices, electromyography monitoring, and an integrated system for the visualization of electromyography signals during muscle training with an array of alternating current electroluminescent devices. The self-adhesive conductive polymer-based electronics show promising features to further develop wearable and comfortable bioelectronic devices with the physiological electric signals of the human body readable and displayable during daily activities.

7.
Langmuir ; 37(30): 9017-9025, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281345

RESUMO

Gallium-based alloys have garnered considerable attention in the scientific community, particularly as they are in an atypical liquid state at and near room temperature. Though physical parameters, such as thermal conductivity, electrical conductivity, viscosity, yield stress, and surface tension, of these alloys are broadly known, the surface tension (surface free energy) of the oxide skin remains intangible due to the high yield stress of the oxide skin. In this article, we propose to employ gradually attenuated vibrations to obtain equilibrium shapes, which are analyzed along the lines of the puddle height method. The surface tension of the oxide skin was determined on quartz glass and liquid metal-phobic diamond coating to be around 350-365 mN/m, thus independent of the substrate surface or employed liquid metal (i.e., eutectic Ga-In (EGaIn) and galinstan). The similarity of the surface tension for different alloys was ascribed to the composition of the oxide skin, which predominantly comprises gallium oxides due to thermodynamic constraints. We envision that this method can also be applied to other liquid metal alloys and liquid metal marble systems facilitating modeling, simulation, and optimization processes.

8.
Soft Matter ; 16(38): 8736-8759, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32969442

RESUMO

Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.

9.
ACS Appl Mater Interfaces ; 12(36): 40891-40900, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805806

RESUMO

Gallium-based liquid metals (GLMs) exist as atypical liquid-phase metals at and near room temperature while being electrically and thermally conductive, enabling copious applications in soft electronics and thermal management systems. Yet, solid metals are affected by interfacing with GLMs, resulting in liquid metal embrittlement and device failure. To avert this issue, mechanically durable and electrically tunable diffusion barriers for long-term reliable liquid metal-solid metal interfacing based on the deposition of various diamond coatings are designed and synthesized, as they feature high chemical inertness and extraordinary mechanical resistance. The diamond coatings show superlyophobicity (GLM contact angle ≥ 155°) and are nonstick toward GLMs, thereby achieving high mobility of GLM droplets (sliding angle 8-12°). The excellent barrier and anti-adhesion performance of the diamond coatings are proven in long-term experiments (3 weeks) of coated titanium alloy (Ti) samples in contact with GLMs. The electrical performance of the conductive diamond coating deposited on Ti is reliable and stable over a period of 50 h. As proof-of-concept applications a switch and a thermal management device based on liquid metals are demonstrated, signifying that coating diamond films on metals is a potent means to achieve stable integration of solid metals with GLMs.

10.
Materials (Basel) ; 13(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429161

RESUMO

The liquid metal lyophobicity of a rough substrate was, in previous articles, found to be rather independent on the surface wettability. In this article, we scrutinize the impact of surface wettability of a structured (rough) surface on the liquid metal wettability and adhesion. As a model system, a structured diamond coating was synthesized and modified by air plasma. We show that surface wettability (surface free energy) does not play a prominent role for static contact angle measurements and for the liquid metal repelling properties of the diamond coating in droplet impact experiments. In contrast, roll off angles and repeated deposition experiments illustrate that the increased hydrophilicity impacts the long-term liquid metal repellency of our coating. Liquid metal adhered after around 50 deposition/removal cycles on the hydrophilic diamond coating, while no liquid metal adhesion was visible after 100 cycles on the hydrophobic diamond coating, illustrating the fundamental role for the adhesion of liquid metal. The effect of repeated deposition in conjunction with gentle applied force was employed for coating the liquid metal lyophobic (hydrophilic) diamond coating with a thin liquid metal layer. The observed effect may find application in flexible electronics and thermal management systems as a means to improve interfacing of the liquid metal with conductive non-metal coatings.

11.
Macromol Rapid Commun ; 40(24): e1900537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31762154

RESUMO

Mechanically controlled polymerization that employs the mechanical energy to fabricate novel synthetic materials has attracted considerable interest. However, only a few examples have been achieved so far, owing to the limited choices of materials and strategies. Herein, a versatile, liquid metal (LM)-mediated mechanochemical polymerization method (LMMMP) is developed for the air-compatible, robust preparation of polymers in an aqueous solution. This method involves the simultaneous disruption of bulk LMs into micro- and nanodroplets and the combination of monomers into polymers during ultrasonic irradiation. The pristine and reactive LM surface continuously generated by ultrasound endows this polymerization method with excellent oxygen tolerance, high reaction rate, and the ability to produce polymers with high molecular weight from a wide variety of water-soluble monomers. Besides, LM droplets are readily reclaimed and reused for polymerization. The authors envision that the LMMMP promotes the utilization of mechanical energy for the synthesis of functional polymers, constitutes a novel fabrication approach for polymer-LM nanocomposites, and provides new insight into the design of LM-based platforms for polymerization.


Assuntos
Ligas/síntese química , Gálio/química , Índio/química , Ligas/química , Estrutura Molecular , Tamanho da Partícula , Polimerização , Propriedades de Superfície
12.
Langmuir ; 35(45): 14596-14602, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31609120

RESUMO

Inspired by fish skin, biomimetic self-renewal poly[(ethylene oxide)-co-(ethylene carbonate)] (PEOC) brushes with protein resistance had been prepared via surface-initiated ring-opening polymerization (ROP). The results of hydrolytic degradation indicated that the PEOC brushes could degrade in artificial seawater. Ellipsometry, X-ray photoelectron spectrometry, and contact angle results demonstrated that the PEOC brushes degrade uniformly. By using a quartz crystal microbalance with dissipation, we studied the protein adsorption on the surfaces in artificial seawater at different degradation times. After 24, 48, 96, and 168 h of degradation, the PEOC surfaces showed nearly zero Δf and ΔD for bovine serum albumin, lysozyme, and fibrinogen. More importantly, there was a notably lower density of microorganisms adhered to the surface modified with PEOC compared with that of the surface without PEOC in natural seawater. The current study showed that the PEOC brushes exhibit a self-renewal property with persistent protein resistance and prevent the adhesion of microorganisms. Such a biomimetic polymer had a great potential in marine antibiofouling.


Assuntos
Materiais Biomiméticos/síntese química , Fibrinogênio/química , Muramidase/química , Polímeros/síntese química , Soroalbumina Bovina/química , Pele/química , Animais , Materiais Biomiméticos/química , Bovinos , Peixes , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
13.
Chemphyschem ; 20(17): 2139-2154, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31321876

RESUMO

Recently, temperature-resistant hydrogels, hydrogels which are freezing- and dehydration-resistant, have garnered considerable attention in the scientific community as they extend the rage of application of hydrogels to arid and/or cold environments. Besides, these hydrogels exhibit tunable conductivity and mechanical performance while offering excellent biocompatibility and flexibility, making them interesting candidates for flexible and wearable electronics and (bio)sensors. Several biomimetic strategies were developed to fabricate anti-freezing and anti-dehydration hydrogels with a diversity of merits, such as high strain resistance and conductivity, even at sub-zero temperatures, and employed as (bio)sensors, electrodes, and energy-storage devices. This review summarizes the recent advances in the preparation and application of temperature-resistant hydrogels, indicates issues of the state-of-the-art hydrogels, and offers potential future research directions.

14.
Small ; 15(9): e1804838, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30650244

RESUMO

Shape morphing nanosystems have recently attracted much attention and a number of applications are developed, spanning from autonomous robotics to drug delivery. However, the fabrication of such nanosystems remains at an early stage owing to limited choices of strategies and materials. This work reports a facile method to fabricate liquid metal (LM) nanodroplets by sonication of bulk LM in an aqueous dopamine hydrochloride solution and their application in light-induced shape morphing at the nanoscale. In this method, dopamine acts as a surfactant, which stabilizes the LM nanodroplets dispersion during the sonication, and results in downsizing of the nanodroplets. Furthermore, by adding 2-amino-2-(hydroxymethyl)-1,3-propanediol to the suspension, self-polymerization of dopamine molecules occurs, resulting in the formation of polydopamine (PDA)-coated LM nanodroplets. Owing to the high photothermal conversion of the PDA, PDA-coated LM nanodroplets are transformed from spherical shapes to ellipsoids by NIR laser irradiation. This study paves a simple and reliable pathway for the preparation of functional LM nanodroplets and their application as shape-morphing nanosystems.

15.
Langmuir ; 35(2): 372-381, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30575374

RESUMO

The electric actuation of room-temperature liquid metals, such as Galinstan (gallium-indium-tin), has largely been conducted in alkaline electrolyte. Addition of surface-active anions and a proper acidic pH are expected to influence the interfacial tension of the liquid metal due to a high surface charge density. Hence, it should be possible to actuate liquid metals in such acidic environments. To ascertain this, at first, the dependence of the interfacial tension of Galinstan in NaOH, acidified KI, and acidified NaCl electrolyte on the concentration of the surface-active anions OH-, I-, and Cl-, respectively, were studied. Subsequently, a systematic study of the actuation of Galinstan in acidified KI electrolyte was executed and compared to actuation in alkaline medium. In the presence of HCl and acidified NaCl electrolyte, the interfacial tension of Galinstan is only marginally altered, while acidified KI solution reduced the interfacial tension of Galinstan significantly from 470.8 ± 1.4 (no KI) to 370.6 ± 4.1 mN/m (5 M KI) due to the high surface charge density of the electric double layer. Therefore, in acidified electrolyte in the presence of surface-active anions, the electrically actuated motion of LM can be realized. In particular, the actuation of Galinstan achieves a higher average and maximum speed at lower applied voltage and power consumption for acidified KI electrolyte. The formation of high surface charge density in acidified environments signifies a paradigm shift and opens up new possibilities to tune interfacial tension and controlled LM droplet motion of room-temperature liquid metals.

16.
Macromol Rapid Commun ; 39(12): e1800143, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29749078

RESUMO

The mechanical properties (e.g., stiffness, stretchability) of prefabricated hydrogels are of pivotal importance for diverse applications in tissue engineering, soft robotics, and medicine. This study reports a feasible method to fabricate ultrasoft and highly stretchable structures from stiff and tough hydrogels of low stretchability and the application of these switchable hydrogels in programmable shape-morphing systems. Stiff and tough hydrogel structures are first fabricated by the mechanical strengthening of Ca2+ -alginate/polyacrylamide tough hydrogels by addition of Fe3+ ions, which introduces Fe3+ ionically cross-linked centers into the Ca2+ divalent cross-linked hydrogel, forming an additional and much less flexible trivalent ionically cross-linked network. The resulting stiff and tough hydrogels are exposed to an L-ascorbic acid (vitamin C, VC) solution to rapidly reduce Fe3+ to Fe2+ . As a result, flexible divalent ionically cross-linked networks are formed, leading to swift softening of the stiff and tough hydrogels. Moreover, localized stiffness variation of the tough hydrogels can be realized by precise patterning of the VC solution. To validate this concept, sequential steps of VC patterning are carried out for local tuning of the stiffness of the hydrogels. With this strategy, localized softening, unfolding, and sequential folding of the tough hydrogels into complex 3D structures is demonstrated.


Assuntos
Resinas Acrílicas/química , Alginatos/química , Cálcio/química , Hidrogéis/química , Ácido Ascórbico/química , Materiais Biocompatíveis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ferro/química , Fenômenos Mecânicos
17.
Angew Chem Int Ed Engl ; 57(22): 6568-6571, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29656553

RESUMO

Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti-freezing, non-drying CPA-based organohydrogels with long-term stability by partially displacing water molecules within the pre-fabricated hydrogels. CPA-based Ca-alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA-based organohydrogels remain unfrozen and mechanically flexible even up to -70 °C and are stable under ambient conditions or even vacuum.

18.
J Mater Chem B ; 6(45): 7366-7372, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254737

RESUMO

Tough protein organohydrogels were fabricated by applying a solvent displacement-induced toughening (SDIT) strategy. With SDIT, traditionally weak and brittle protein hydrogels were altered to protein organohydrogels with remarkably high performance in anti-freezing, non-drying, topological healing, thermal plasticizing, mechanical toughness and stretchability. The SDIT opens a reliable and straightforward path to develop novel biomimetic materials and artificial devices from abandunt protein-based sources.

19.
Sheng Wu Gong Cheng Xue Bao ; 33(9): 1390-1398, 2017 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-28956390

RESUMO

It was known that bacteria adhere to surfaces and form sessile colonies called biofilms. Biofilms show potential applications for biodegradation and biocatalysis, whilst they also cause healthy and environmental problems. In particular, they lead to human infections and biofouling problems in industry. Physical properties of biofilms reflect the architecture and mechanical stability of biofilms that are highly related to their resistance to environmental challenges and their survival. In this article, we reviewed the physical properties involved in the development of biofilms and the related characterization techniques. The surface adhesion of bacteria plays a crucial role in the biofilm formation, which is determined by the motion of bacteria near a surface as well as the interaction between the bacteria and the surface. As far as the biofilms become mature, they behave like a polymer glassy material revealed by rheological measurements.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes , Aderência Bacteriana , Polímeros , Propriedades de Superfície
20.
Colloids Surf B Biointerfaces ; 150: 279-287, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341156

RESUMO

Hydrophilic poly[oligo(ethylene glycol) methyl methacrylate] (POEGMA) brush layers with different thickness and graft densities were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) to construct a model surface to examine protein-surface interactions in a serum environment. The thickness of the POEGMA brush layers could be well controlled by the polymerization time and density of the immobilized initiators. The interactions between these brush-modified surfaces and the protein-coated polystyrene (PS) particles in newborn calf serum (NBCS) environment were then measured by total internal reflection microscopy (TIRM). In addition, protein adsorption properties onto the polymer brush surface layers were examined by atomic force microscopy (AFM). Relatively large amounts of protein adsorbed to short (4nm and 9nm-thick) POEGMA-coated surfaces or surfaces grafted with a low density of polymer chains. It was considered that shorter polymer chains or chains with low grafted density cannot fully cover the surfaces, proteins in serum could directly interact with the material surface and then deposited to form an adsorbed layer. The TIRM measurements showed that such adsorbed protein layer could mediate the interactions between the two surfaces by generating steric or bridging forces, resulting in different interaction potentials. Some particles were freely diffusing, some experienced intermittent diffusion and more than 50% of particles were irreversibly deposited to the surfaces covered by short polymer brushes. However, for longer (17 and 30nm-thick) POEGMA brush layer surfaces, material surface would be sufficiently covered by the dense coating and the first step of protein adsorption on surface was avoided. TIRM measurements showed that around 95% of the protein-coated particles could freely move in the serum and no attractive force between two surfaces was detected. The steric repulsion generated from the long POEGMA brush layer in the swollen state was long-range and strong so that the protein adsorption is very unlikely. These results concluded that the adsorbed protein layer on POEGMA surfaces plays an important role in regulating the interaction between protein-coated particles and POEGMA surfaces which are highly repellent toward protein adsorption.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Proteínas/química , Soro/química , Adsorção , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/síntese química , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polimerização , Ácidos Polimetacrílicos , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...