Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256208

RESUMO

Since its initial discovery in 1994, the adipokine leptin has received extensive interest as an important satiety factor and regulator of energy expenditure. Although produced primarily by white adipocytes, leptin can be synthesized by numerous tissues including those comprising the cardiovascular system. Cardiovascular function can thus be affected by locally produced leptin via an autocrine or paracrine manner but also by circulating leptin. Leptin exerts its effects by binding to and activating specific receptors, termed ObRs or LepRs, belonging to the Class I cytokine family of receptors of which six isoforms have been identified. Although all ObRs have identical intracellular domains, they differ substantially in length in terms of their extracellular domains, which determine their ability to activate cell signalling pathways. The most important of these receptors in terms of biological effects of leptin is the so-called long form (ObRb), which possesses the complete intracellular domain linked to full cell signalling processes. The heart has been shown to express ObRb as well as to produce leptin. Leptin exerts numerous cardiac effects including the development of hypertrophy likely through a number of cell signaling processes as well as mitochondrial dynamics, thus demonstrating substantial complex underlying mechanisms. Here, we discuss mechanisms that potentially mediate leptin-induced cardiac pathological hypertrophy, which may contribute to the development of heart failure.


Assuntos
Insuficiência Cardíaca , Leptina , Remodelação Vascular , Humanos , Cardiomegalia , Coração , Leptina/fisiologia , Transdução de Sinais
2.
Mol Cell Biochem ; 478(11): 2539-2551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36892791

RESUMO

Probiotics are considered to represent important modulators of gastrointestinal health through increased colonization of beneficial bacteria thus altering the gut microflora. Although these beneficial effects of probiotics are now widely recognized, emerging evidence suggests that alterations in the gut microflora also affect numerous other organ systems including the heart through a process generally referred to as the gut-heart axis. Moreover, cardiac dysfunction such as that seen in heart failure can produce an imbalance in the gut flora, known as dysbiosis, thereby further contributing to cardiac remodelling and dysfunction. The latter occurs by the production of gut-derived pro-inflammatory and pro-remodelling factors which exacerbate cardiac pathology. One of the key contributors to gut-dependent cardiac pathology is trimethylamine N-oxide (TMAO), a choline and carnitine metabolic by-product first synthesized as trimethylamine which is then converted into TMAO by a hepatic flavin-containing monooxygenase. The production of TMAO is particularly evident with regular western diets containing high amounts of both choline and carnitine. Dietary probiotics have been shown to reduce myocardial remodelling and heart failure in animal models although the precise mechanisms for these effects are not completely understood. A large number of probiotics have been shown to possess a reduced capacity to synthesize gut-derived trimethylamine and therefore TMAO thereby suggesting that inhibition of TMAO is a factor mediating the beneficial cardiac effects of probiotics. However, other potential mechanisms may also be important contributing factors. Here, we discuss the potential benefit of probiotics as effective therapeutic tools for attenuating myocardial remodelling and heart failure.

3.
Mol Cell Biochem ; 476(1): 333-347, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32940821

RESUMO

Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.


Assuntos
Hipertensão/tratamento farmacológico , Panax/química , Animais , Anti-Hipertensivos , Araliaceae/metabolismo , Biotransformação , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , China , Fermentação , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Temperatura Alta , Humanos , Modelos Animais , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Raízes de Plantas/química , Polissacarídeos/química , Ratos , Saponinas , Triterpenos
4.
Can J Physiol Pharmacol ; 99(5): 512-521, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33091308

RESUMO

We determined whether North American ginseng (Panax quinquefolius L.) mitigates the effect of angiotensin II on hypertrophy and heart failure. Angiotensin II (0.3 mg/kg) was administered to rats for 2 or 4 weeks in the presence or absence of ginseng pretreatment. The effect of ginseng (10 µg/mL) on angiotensin II (100 nM) - induced hypertrophy was also determined in neonatal rat ventricular myocytes. We also determined effects of ginseng on fatty acid and glucose oxidation by measuring gene and protein expression levels of key factors. Angiotensin II treatment for 2 and 4 weeks induced cardiac hypertrophy as evidenced by increased heart weights, as well as the upregulation of the hypertrophy-related fetal gene expression levels, with all effects being abolished by ginseng. Ginseng also reduced abnormalities in left ventricular function as well as the angiotensin II-induced increased blood pressure. In myocytes, ginseng abolished the hypertrophic response to angiotensin II as assessed by surface area and gene expression of molecular markers of hypertrophy. Ginseng modulated angiotensin II-induced abnormalities in gene expression and protein levels of CD36, CPT1M, Glut4, and PDK4 in vivo and in vitro. In conclusion, ginseng suppresses angiotensin II-induced cardiac hypertrophy and dysfunction which is related to normalization of fatty acid and glucose oxidation.


Assuntos
Angiotensina II , Panax , Animais , Cardiomegalia , Insuficiência Cardíaca , Miócitos Cardíacos , Ratos
5.
Can J Physiol Pharmacol ; 97(4): 265-276, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30395481

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Panax/química , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico
6.
Can J Physiol Pharmacol ; 96(9): 859-868, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29940129

RESUMO

Protection of the ischemic and reperfused myocardium represents a major therapeutic challenge. Translating results from animal studies to the clinical setting has been disappointing, yet the need for effective intervention, particularly to limit heart damage following infarction or surgical procedures such as coronary artery bypass grafting, is substantial. Among the many compounds touted as cardioprotective agents is ginseng, a medicinal herb belonging to the genus Panax, which has been used as a medicinal agent for thousands of years, particularly in Asian societies. The biological actions of ginseng are very complex and reflect composition of many bioactive components, although many of the biological and therapeutic effects of ginseng have been attributed to the presence of steroid-like saponins termed ginsenosides. Both ginseng and many ginsenosides have been shown to exert cardioprotective properties in experimental models. There is also clinical evidence that traditional Chinese medications containing ginseng exert cardioprotective properties, although such clinical evidence is less robust primarily owing to the paucity of large-scale clinical trials. Here, we discuss the experimental and clinical evidence for ginseng, ginsenosides, and ginseng-containing formulations as cardioprotective agents against ischemic and reperfusion injury. We further discuss potential mechanisms, particularly as these relate to antioxidant properties.


Assuntos
Cardiotônicos/farmacologia , Panax/química , Animais , Ginsenosídeos/farmacologia , Humanos
7.
Can J Physiol Pharmacol ; 95(10): 1170-1176, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28505464

RESUMO

Heart failure is a major medical and economic burden throughout the world. Although various treatment options are available to treat heart failure, death rates in both men and women remain high. Potential adjunctive therapies may lie with use of herbal medications, many of which possess potent pharmacological properties. Among the most widely studied is ginseng, a member of the genus Panax that is grown in many parts of the world and that has been used as a medical treatment for a variety of conditions for thousands of years, particularly in Asian societies. There are a number of ginseng species, each possessing distinct pharmacological effects due primarily to differences in their bioactive components including saponin ginsenosides and polysaccharides. While experimental evidence for salutary effects of ginseng on heart failure is robust, clinical evidence is less so, primarily due to a paucity of large-scale well-controlled clinical trials. However, there is evidence from small trials that ginseng-containing Chinese medications such as Shenmai can offer benefit when administered as adjunctive therapy to heart failure patients. Substantial additional studies are required, particularly in the clinical arena, to provide evidence for a favourable effect of ginseng in heart failure patients.


Assuntos
Cardiomegalia/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Ginsenosídeos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Panax/química , Extratos Vegetais/uso terapêutico , Animais , Cardiomegalia/diagnóstico , Cardiomegalia/fisiopatologia , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/isolamento & purificação , Células Cultivadas , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Ginsenosídeos/efeitos adversos , Ginsenosídeos/isolamento & purificação , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Fitoterapia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Resultado do Tratamento
8.
Can J Physiol Pharmacol ; 94(12): 1325-1335, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27797280

RESUMO

There is increasing evidence for a beneficial effect of ginseng on cardiac pathology. Here, we determined whether North American ginseng can modulate the deleterious effects of the ß-adrenoceptor agonist isoproterenol on cardiac hypertrophy and function using in vitro and in vivo approaches. Isoproterenol was administered for 2 weeks at either 25 mg/kg per day or 50 mg/kg per day (ISO25 or ISO50) via a subcutaneously implanted osmotic mini-pump to either control rats or those receiving ginseng (0.9 g/L in the drinking water ad libitum). Isoproterenol produced time- and dose-dependent left ventricular dysfunction, although these effects were attenuated by ginseng. Improved cardiac functions were associated with reduced heart masses, as well as prevention in the upregulation of the hypertrophy-related fetal gene expression. Lung masses were similarly attenuated, suggesting reduced pulmonary congestion. In in vitro studies, ginseng (10 µg/mL) completely suppressed the hypertrophic response to 1 µmol/L isoproterenol in terms of myocyte surface area, as well as reduction in the upregulation of fetal gene expression. These effects were associated with attenuation in both protein kinase A and cAMP response element-binding protein phosphorylation. Ginseng attenuates adverse cardiac adrenergic responses and, therefore, may be an effective therapy to reduce hypertrophy and heart failure associated with excessive catecholamine production.


Assuntos
Agonistas Adrenérgicos beta/toxicidade , Cardiomegalia/prevenção & controle , Extratos Vegetais/uso terapêutico , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/diagnóstico por imagem , Relação Dose-Resposta a Droga , Isoproterenol/toxicidade , Masculino , Panax , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Ratos , Ratos Sprague-Dawley , Saponinas/isolamento & purificação , Transdução de Sinais/fisiologia , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem
9.
PLoS One ; 11(1): e0145992, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731409

RESUMO

White adipocytes are known to function as endocrine organs by secreting a plethora of bioactive adipokines which can regulate cardiac function including the development of hypertrophy. We determined whether adipose tissue conditioned medium (ATCM) generated from the epididymal regions of normal rats can affect the hypertrophic response of cultured rat ventricular myocytes to endothelin-1 (ET-1) administration. Myocytes were treated with ET-1 (10 nM) for 24 hours in the absence or presence of increasing ATCM concentrations. ATCM supressed the hypertrophic response to ET-1 in a concentration-dependent manner, an effect enhanced by the leptin receptor antagonist and attenuated by an antibody against the adiponectin AdipoR1 receptor. Antihypertrophic effects were also observed with ATCM generated from perirenal-derived adipose tissue. However, this effect was absent in ATCM from adipose tissue harvested from corpulent JCR:LA-cp rats. Detailed analyses of adipokine content in ATCM from normal and corpulent rats revealed no differences in the majority of products assayed, although a significant increase in leptin concentrations concomitant with decreased adiponectin levels was observed, resulting in a 11 fold increase in the leptin to adiponectin ratio in ATCM from JCR:LA-cp. The antihypertrophic effect of ATCM was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), an effect abrogated by the AdipoR1 antibody. Moreover, the antihypertrophic effect of ATCM was mimicked by an AMPK activator. There was no effect of ET-1 on mitogen-activated protein kinase (MAPK) activities 24 hour after its addition either in the presence or absence of ATCM. Our study suggests that adipose tissue from healthy subjects exerts antihypertrophic effects via an adiponectin-dependent pathway which is impaired in obesity, most likely due to adipocyte remodelling resulting in enhanced leptin and reduced adiponectin levels.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Cardiomegalia/metabolismo , Meios de Cultivo Condicionados/metabolismo , Endotelina-1/metabolismo , Leptina/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cardiomegalia/patologia , Células Cultivadas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Ratos Sprague-Dawley
10.
Mol Cell Biochem ; 394(1-2): 237-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24894822

RESUMO

Cluster of differentiation 73 (CD73) is an ecto-5' nucleotidase which catalyzes the conversion of AMP to adenosine. One of the many functions of adenosine is to suppress the activity of tissue nonspecific alkaline phosphatase (TNAP), an enzyme important in regulating intracellular calcification. Since myocardial calcification is associated with various cardiac disease states, we studied the individual roles and crosstalk between CD73 and TNAP in regulating myocyte responses to the α1 adrenoceptor agonist phenylephrine in terms of calcification and hypertrophy. Cultured neonatal rat cardiomyocytes were treated with 10 µM phenylephrine for 24 h in the absence or presence of the stable adenosine analog 2-chloro-adenosine, the TNAP inhibitor tetramisole or the CD73 inhibitor α,ß-methylene ADP. Phenylephrine produced marked hypertrophy as evidenced by significant increases in myocyte surface area and ANP gene expression, as well as calcification determined by Alizarin Red S staining. These responses were associated with reduced CD73 gene and protein expression and CD73 activity. Conversely, TNAP expression and activity were significantly increased although both were suppressed by 2-chloro-adenosine. CD73 inhibition alone significantly reduced myocyte-derived adenosine levels by >50 %, and directly induced hypertrophy and calcification in the absence of phenylephrine. These responses and those to phenylephrine were abrogated by TNAP inhibition. We conclude that TNAP contributes to the hypertrophic effect of phenylephrine, as well as its ability to produce cardiomyocyte calcification. These responses are minimized by CD73-dependent endogenously produced adenosine.


Assuntos
5'-Nucleotidase/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/toxicidade , Fosfatase Alcalina/metabolismo , Cardiomegalia/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/toxicidade , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Calcificação Vascular/induzido quimicamente , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Adenosina/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Animais Recém-Nascidos , Fator Natriurético Atrial/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Fatores de Tempo , Calcificação Vascular/enzimologia , Calcificação Vascular/genética , Calcificação Vascular/patologia
11.
Circ Heart Fail ; 7(3): 491-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24625365

RESUMO

BACKGROUND: Probiotics are extensively used to promote gastrointestinal health, and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of postinfarction heart failure. METHODS AND RESULTS: Rats were subjected to 6 weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum. Culture and 16s rRNA sequencing showed no evidence of GR-1 colonization or a significant shift in the composition of the cecal microbiome. However, animals administered GR-1 exhibited a significant attenuation of left ventricular hypertrophy based on tissue weight assessment and gene expression of atrial natriuretic peptide. Moreover, these animals demonstrated improved hemodynamic parameters reflecting both improved systolic and diastolic left ventricular function. Serial echocardiography revealed significantly improved left ventricular parameters throughout the 6-week follow-up period including a marked preservation of left ventricular ejection fraction and fractional shortening. Beneficial effects of GR-1 were still evident in those animals in which GR-1 was withdrawn at 4 weeks, suggesting persistence of the GR-1 effects after cessation of therapy. Investigation of mechanisms showed a significant increase in the leptin:adiponectin plasma concentration ratio in rats subjected to coronary ligation, which was abrogated by GR-1. Metabonomic analysis showed differences between sham control and coronary artery ligated hearts particularly with respect to preservation of myocardial taurine levels. CONCLUSIONS: The study suggests that probiotics offer promise as a potential therapy for the attenuation of heart failure.


Assuntos
Cardiomegalia/prevenção & controle , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/complicações , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Administração Oral , Animais , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Oclusão Coronária/complicações , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Masculino , Infarto do Miocárdio/fisiopatologia , Probióticos/farmacologia , Ratos , Ratos Sprague-Dawley
12.
Mol Cell Biochem ; 385(1-2): 239-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24096734

RESUMO

Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Cardiomegalia/prevenção & controle , Miócitos Cardíacos/patologia , Polimerização/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Endotelina-1/farmacologia , Ativação Enzimática/efeitos dos fármacos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
13.
Can J Physiol Pharmacol ; 91(11): 883-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24117255

RESUMO

Leptin is a 16 kDa peptide that was first identified in 1994 through positional cloning of the mouse obesity gene. Although the primary function of leptin is to act a satiety factor through its actions on the hypothalamus, it is now widely recognized that leptin can exert effects on many other organs through activation of its receptors, which are ubiquitously expressed. Leptin is secreted primarily by white adipocytes, but it is also produced by other tissues including the heart where it can exert effects in an autocrine or paracrine manner. One of these effects involves the induction of cardiomyocyte hypertrophy, which appears to occur via multiple cell signalling mechanisms. As adipocytes are the primary site of leptin production, plasma leptin concentrations are generally positively related with body mass index and the degree of adiposity. However, hyperleptinemia is also associated with cardiovascular disease, including heart failure, in the absence of obesity. Here we review the potential role of leptin in heart disease, particularly pertaining to its potential contribution to myocardial remodelling and heart failure, as well as the underlying mechanisms. We further discuss potential interactions between leptin and another adipokine, adiponectin, and the potential implications of this interaction in terms of fully understanding leptin's effects.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Leptina/metabolismo , Leptina/fisiologia , Adiponectina/fisiologia , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Composição Corporal/fisiologia , Calcineurina/fisiologia , Cardiomegalia/induzido quimicamente , Humanos , Leptina/farmacologia , Mitocôndrias Cardíacas/fisiologia , Probióticos , Proteínas/metabolismo , Receptores para Leptina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/fisiologia
14.
PLoS One ; 8(9): e74235, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019958

RESUMO

The recently-identified fat mass and obesity-associated (FTO) protein is associated with various physiological functions including energy and body weight regulation. Ubiquitously expressed, FTO was identified in heart homogenates although its function is unknown. We studied whether FTO is specifically expressed within the cardiac myocyte and its potential role pertaining to the hypertrophic effect of the adipokine leptin. Most experiments were performed using cultured neonatal rat cardiomyocytes which showed nuclei-specific FTO expression. Leptin significantly increased FTO expression which was associated with myocyte hypertrophy although both events were abrogated by FTO knockdown with siRNA. Administration of a leptin receptor antibody to either normal or obese rats significant reduced myocardial FTO protein expression. Responses in cardiomyocytes were accompanied by JAK2/STAT3 activation whereas JAK2/STAT3 inhibition abolished these effects. Expression of the cut-like homeobox 1(CUX1) transcriptional factor was significantly increased by leptin although this was restricted to the cathepsin L-dependent, proteolytically-derived shorter p110CUX1 isoform whereas the longer p200CUX1 protein was not significantly affected. Cathepsin L expression and activity were both significantly increased by leptin whereas a cathepsin L peptide inhibitor or siRNA specific for CUX1 completely prevented the leptin-induced increase in FTO expression. The cathepsin L peptide inhibitor or siRNA-induced knockdown of either CUX1 or FTO abrogated the hypertrophic response to leptin. Two other pro-hypertrophic factors, endothelin-1 or angiotensin II had no effect on FTO expression and FTO knockdown did not alter the hypertrophic response to either agent. This study demonstrates leptin-induced FTO upregulation in cardiomyocytes via JAK2/STAT3- dependent CUX1 upregulation and suggests an FTO regulatory function of leptin. It also demonstrates for the first time a functional role of FTO in the cardiomyocyte.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Sequência de Bases , Western Blotting , Catepsina L/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Janus Quinase 2/metabolismo , Leptina/fisiologia , Masculino , Miócitos Cardíacos/enzimologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/fisiologia
15.
Mol Cell Biochem ; 363(1-2): 323-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22160804

RESUMO

In addition to inotropic effects, cardiac glycosides exert deleterious effects on the heart which limit their use for cardiac therapeutics. In this study, we determined the possible contribution of ouabain-induced iNOS stimulation to the resultant hypertrophic as well as cytotoxic effects of the glycoside on cultured adult rat ventricular myocytes. Myocytes were treated with ouabain (50 µM) for up to 24 h. Ouabain significantly increased gene and protein levels of inducible nitric oxide synthase (iNOS) which was associated with significantly increased release of NO from myocytes as well as increased total release of reactive oxygen species (ROS), superoxide anion (O(2) (-)), and increased peroxynitrite formation as assessed by protein tyrosine nitration. Administration of ouabain was also associated with increased levels of myocyte toxicity as determined by myocyte morphology, trypan blue staining and lactate dehydrogenase (LDH) efflux. The nonspecific NOS inhibitor Nω-nitro-L: -arginine methyl ester and the more selective iNOS inhibitor 1400W both abrogated the increase in LDH release but had no significant effect on either morphology or trypan blue staining. Ouabain also significantly increased both myocyte surface area and expression of atrial natriuretic peptide indicating a hypertrophic response with both parameters being completely prevented by NOS inhibition. The effects of iNOS inhibitors were associated with diminished ouabain tyrosine nitration as well as abrogation of ouabain-induced p38 and ERK phosphorylation. Our study shows that ouabain is a potent inducer of NO formation, iNOS upregulation, and increased production of ROS. Inhibition of ouabain-dependent peroxynitrite formation may contribute to the antihypertrophic effect of iNOS inhibition possibly by preventing downstream MAPK activation.


Assuntos
Cardiotônicos/toxicidade , Hipertrofia Ventricular Esquerda/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Ouabaína/toxicidade , Ácido Peroxinitroso/metabolismo , Animais , Forma Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Indução Enzimática , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , L-Lactato Desidrogenase/metabolismo , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Fosforilação , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Drugs ; 71(15): 1989-2008, 2011 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21985167

RESUMO

Although employed in Asian societies for thousands of years, the use of ginseng as an herbal medication for a variety of disorders has increased tremendously worldwide in recent years. Ginseng belongs to the genus Panax, of which there exists a variety, generally reflecting their geographic origin. North American ginseng (Panax quinquefolius) and Asian ginseng (Panax ginseng) are two such varieties possessing a plethora of pharmacological properties, which are attributed primarily to the presence of different ginsenosides that bestow these ginsengs with distinct pharmacodynamic profiles. The many cardiovascular benefits attributed to ginseng include cardioprotection, antihypertensive effects, and attenuation of myocardial hypertrophy and heart failure. Experimental studies have revealed a number of beneficial properties of ginseng, particularly in the area of cardiac protection, where ginseng and ginsenosides have been shown to protect the ischaemic and reperfused heart in a variety of experimental models. Emerging evidence also suggests that ginseng attenuates myocardial hypertrophy, thus blunting the remodelling and heart failure processes. However, clinical evidence of efficacy is not convincing, likely owing primarily to the paucity of well designed, randomized, controlled clinical trials. Adding to the complexity in understanding the cardiovascular effects of ginseng is the fact that each of the different ginseng varieties possesses distinct cardiovascular properties, as a result of their respective ginsenoside composition, rendering it difficult to assign a general, common cardiovascular effect to ginseng. Additional challenges include the identification of mechanisms (likely multifaceted) that account for the effects of ginseng and determining which ginsenoside(s) mediate these cardiovascular properties. These concerns notwithstanding, the potential cardiovascular benefit of ginseng is worthy of further studies in view of its possible development as a cardiovascular therapeutic agent, particularly as adjunctive therapy to existing medications.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Sistema Cardiovascular/efeitos dos fármacos , Ginsenosídeos/uso terapêutico , Panax , Fitoterapia , Preparações de Plantas/uso terapêutico , Doenças Cardiovasculares/história , Ginsenosídeos/história , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Humanos , Preparações de Plantas/história , Plantas Medicinais
17.
Circ Heart Fail ; 4(1): 79-88, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971938

RESUMO

BACKGROUND: Ginseng is a medicinal plant used widely in Asia that has gained popularity in the West during the past decade. Increasing evidence suggests a therapeutic role for ginseng in the cardiovascular system. The pharmacological properties of ginseng are mainly attributed to ginsenosides, the principal bioactive constituents in ginseng. The present study was carried out to determine whether ginseng exerts a direct antihypertrophic effect in cultured cardiomyocytes and whether it modifies the heart failure process in vivo. Moreover, we determined the potential underlying mechanisms for these actions. METHODS AND RESULTS: Experiments were performed on cultured neonatal rat ventricular myocytes as well as adult rats subjected to coronary artery ligation (CAL). Treatment of cardiomyocytes with the α(1) adrenoceptor agonist phenylephrine (PE) for 24 hours produced a marked hypertrophic effect as evidenced by significantly increased cell surface area and ANP gene expression. These effects were attenuated by ginseng in a concentration-dependent manner with a complete inhibition of hypertrophy at a concentration of 10 µg/mL. Phenylephrine-induced hypertrophy was associated with increased gene and protein expression of the Na(+)-H(+) exchanger 1 (NHE-1), increased NHE-1 activity, increased intracellular concentrations of Na(+) and Ca(2+), enhanced calcineurin activity, increased translocation of NFAT3 into nuclei, and GATA-4 activation, all of which were significantly inhibited by ginseng. Upregulation of these systems was also evident in rats subjected to 4 weeks of CAL. However, animals treated with ginseng demonstrated markedly reduced hemodynamic and hypertrophic responses, which were accompanied by attenuation of upregulation of NHE-1 and calcineurin activity. CONCLUSIONS: Taken together, our results demonstrate a robust antihypertrophic and antiremodeling effect of ginseng, which is mediated by inhibition of NHE-1-dependent calcineurin activation.


Assuntos
Calcineurina/metabolismo , Insuficiência Cardíaca/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Panax , Extratos Vegetais/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Inibidores de Calcineurina , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fator de Transcrição GATA4/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Hipertrofia/prevenção & controle , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fenilefrina/efeitos adversos , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores
18.
Am J Physiol Heart Circ Physiol ; 298(2): H545-53, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19966059

RESUMO

Adenosine has been shown to exert direct antihypertrophic effects on the heart, and plasma adenosine levels have been shown to be elevated in patients with heart failure. It has therefore been proposed that endogenously synthesized adenosine may function as a cardiac antihypertrophic factor. The present study was aimed to determine whether the adenosine system is altered in a potential adaptive manner following phenylephrine-induced hypertrophy in cultured neonatal rat ventricular myocytes. Phenylephrine produced significant hypertrophy as determined by cell size and atrial natriuretic peptide gene expression, which was accompanied by significantly increased gene and protein expression of adenosine A(1), A(2a), and A(3) receptors. These effects and the hypertrophic response were prevented by the alpha(1)-adrenoceptor antagonist prazosin as well as pharmacological agonists for all adenosine receptor subtypes. The upregulation of adenosine receptors by phenylephrine was also abrogated by adenosine 5'-(alpha,beta-methylene)diphosphate, an inhibitor of ectosolic 5'-nucleotidase. Moreover, phenylephrine significantly increased production of adenosine from myocytes in the presence of a nucleoside transport and adenosine deaminase inhibitor, the combination of which abrogated the hypertrophic effect of phenylephrine. The latter effect was reversed by adenosine receptor antagonists. Phenylephrine also produced a significant upregulation in expression levels of equilibrative nucleoside transporter 1 although expression levels of equilibrative nucleoside transporter 2 were unaffected. Taken together, our results suggest an adaptive upregulation of the adenosine system to phenylephrine-induced cardiomyocyte hypertrophy that serves to limit the hypertrophic effect of alpha(1-)adrenoceptor activation.


Assuntos
Adenosina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Ventrículos do Coração/patologia , Miócitos Cardíacos/patologia , Fenilefrina/efeitos adversos , Regulação para Cima/fisiologia , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Fenilefrina/farmacologia , Prazosina/farmacologia , Antagonistas de Receptores Purinérgicos P1 , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P1/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Cardiovasc Res ; 85(1): 79-89, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19687166

RESUMO

AIMS: Cardiac glycosides induce cardiomyocyte hypertrophy via yet to be defined mechanisms. These hypertrophic effects are likely related to changes in intracellular signalling secondary to Na(+)-K(+) ATPase (NKA) inhibition which would produce elevations in intracellular sodium concentrations. Sodium-hydrogen exchanger isoform 1 (NHE-1) also contributes to intracellular sodium regulation. Accordingly, we determined the contribution of NHE-1 to cardiac glycoside-induced hypertrophy. METHODS AND RESULTS: The majority of the experiments were performed on cultured neonatal rat ventricular myocytes exposed to either ouabain (100 microM) or digoxin (40 microM) for 24 h, although additional experiments were also done using adult left ventricular myocytes with 30 microM of either glycoside. Both glycosides increased cell surface area by 30% and atrial natriuretic peptide gene expression by two- to three-fold (P < 0.05 for both). These effects were associated with a significant reduction in the expression of two NKA isoforms, alpha(2) and alpha(3), whereas the alpha(1) isoform was unaffected. Conversely, both glycosides increased NHE-1 expression in cardiomyocytes by approximately two-fold and significantly increased intracellular sodium concentrations by more than 60% (P < 0.05). Both ouabain and digoxin were also found to significantly increase phosphorylation of mitogen-activated protein kinases. All these effect were prevented when identical experiments were carried out in the presence of the NHE-1 inhibitors EMD 87580 or AVE 4890. Identical results were obtained using adult myocytes, although this was associated with downregulation of all three NKA isoforms. Glycoside-induced increase in cell shortening or intracellular Ca(2+) transients was not significantly affected by NHE-1 inhibition. CONCLUSION: When taken together, these studies show that NHE-1 inhibition attenuates the hypertrophic effect of cardiac glycosides without affecting inotropic parameters and suggest a possible approach to limiting glycoside-induced hypertrophic responses while preserving therapeutic, i.e. inotropic, actions.


Assuntos
Glicosídeos Cardíacos/toxicidade , Cardiomegalia/tratamento farmacológico , Miócitos Cardíacos/enzimologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Animais , Cardiomegalia/induzido quimicamente , Digoxina/toxicidade , Ventrículos do Coração , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Contração Miocárdica/efeitos dos fármacos , Ouabaína/toxicidade , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/genética
20.
J Pharmacol Exp Ther ; 312(1): 27-34, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15452191

RESUMO

Plasma adenosine levels are elevated in cardiovascular disease including hypertension and heart failure, and the nucleoside has been proposed to serve as an endogenous antimyocardial remodeling factor. We studied the modulation of phenylephrine-induced hypertrophy by adenosine receptor activation in isolated neonatal cultured ventricular myocytes. Phenylephrine (10 muM) increased cell size by 35% and significantly increased expression of atrial natriuretic peptide. These effects were reduced by the stable adenosine analog 2-chloroadenosine and were completely blocked by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (1 microM), the A(2A) receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine (100 nM), and the A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-methyluronamide (100 nM). The antihypertrophic effects of all three agonists were completely reversed by their respective antagonists. Phenylephrine significantly up-regulated expression of the immediate early gene c-fos especially within the first 30 min of phenylephrine treatment. These effects were almost completely inhibited by all adenosine receptor agonists. Although phenylephrine also induced early stimulation of both p38 mitogen-activated protein kinase and extracellular signal-regulated kinase, these responses were unaffected by adenosine agonists. The expression of the G-protein regulatory factors RGS2 and RGS4 were increased by nearly 3-fold by phenylephrine treatment although this was completely prevented by adenosine receptor agonists. These agents also blocked the ability of phenylephrine to up-regulate Na/H exchange isoform 1 (NHE1) expression in hypertrophied myocytes. Thus, our results demonstrate an antihypertrophic effect of adenosine acting via multiple receptor subtypes through a mechanism involving down-regulation of NHE1 expression. The ability to prevent regulators of G-protein signaling (RGS) up-regulation further suggests that adenosine receptor activation minimizes signaling which leads to hypertrophic responses.


Assuntos
Adenosina/análogos & derivados , Hipertrofia/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/efeitos adversos , Receptor A1 de Adenosina/fisiologia , Receptor A2A de Adenosina/fisiologia , Receptor A3 de Adenosina/fisiologia , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Agonistas do Receptor A3 de Adenosina , Agonistas alfa-Adrenérgicos/efeitos adversos , Animais , Interações Medicamentosas , Fenetilaminas/farmacologia , Fenilefrina/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...