Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(14): 6655-6663, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36892483

RESUMO

In this report, we investigate the addition of two metal cations, simultaneously and sequentially to Cu2-xSe nanoparticles. The metal combinations (Ag-Au, Ag-Pt, Hg-Au and Hg-Pt) are chosen such that one metal adds to the structure via cation exchange and the other adds to the structure via metal deposition when added individually to Cu2-xSe nanoparticles. Surprisingly, we find that for each metal combination, across all three synthesis routes, cation exchange and metal deposition products are obtained without deviation from the outcomes seen in the binary metal systems. However, within those outcomes the data show several types of heterogeneities in the morphologies formed including extent and composition of cation exchange products as well as the extent and composition of the metal deposited products. Taken together, these results suggest a hierarchical control for nanoheterostructure morphologies where the pathways of cation exchange or metal deposition in post-synthetic modification of Cu2-xSe exhibit relatively general outcomes as a function of metal, regardless of synthetic approach or metal combination. However, the detailed composition and interface populations of the resulting materials are more sensitive to both metal identities and synthetic procedure (e.g. order of reagent addition), suggesting that certain principles of metal chalcogenide post-synthetic modification are excitingly robust, while also revealing new avenues for both mechanistic discovery and structural control.

2.
Chem Commun (Camb) ; 58(68): 9496-9499, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35920348

RESUMO

A general method is developed for removal of native nonpolar oleate ligands from colloidal metal oxide nanocrystals of varying morphologies and compositions. Ligand stripping occurs by phase transfer into potassium hydroxide solution, yielding stable aqueous dispersions with little nanocrystal aggregation and without significant changes to the nanomaterials' physical or chemical properties. This method enables facile fabrication of conductive films of ligand-free nanocrystals.


Assuntos
Nanopartículas Metálicas , Óxidos , Ligantes , Ácido Oleico , Óxidos/química
3.
Nano Lett ; 22(12): 5009-5014, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35640240

RESUMO

Although colloidal nanoparticles hold promise for fabricating electronic components, the properties of nanoparticle-derived materials can be unpredictable. Materials made from metallic nanocrystals exhibit a variety of transport behavior ranging from insulators, with internanocrystal contacts acting as electron transport bottlenecks, to conventional metals, where phonon scattering limits electron mobility. The insulator-metal transition (IMT) in nanocrystal films is thought to be determined by contact conductance. Meanwhile, criteria are lacking to predict the characteristic transport behavior of metallic nanocrystal films beyond this threshold. Using a library of transparent conducting tin-doped indium oxide nanocrystal films with varied electron concentration, size, and contact area, we assess the IMT as it depends on contact conductance and show how contact conductance is also key to predicting the temperature-dependence of conductivity in metallic films. The results establish a phase diagram for electron transport behavior that can guide the creation of metallic conducting materials from nanocrystal building blocks.

5.
J Am Chem Soc ; 143(21): 8137-8144, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019400

RESUMO

Heterogenous nanomaterials containing various inorganic phases have far-reaching impacts both from the physical phenomena they reveal and the technologies they enable. While the variety and impact of these materials has been demonstrated in many reports, there is critical ambiguity in the factors that lead to major bifurcations in developing these heterostructures, for example, the formation of either mixed metal semiconductors or segregated metal-semiconductor phases. Here, we compare outcomes of independently introducing 5 different metal cations (Au3+, Ag+, Hg2+, Pd2+, and Pt2+) to antifluorite copper selenide (Cu2-xSe) nanoparticles (diameter = 52 ± 5 nm). This suite of metal cations allowed us to control for and evaluate a variety of potentially competing intrinsic system parameters including metal cation size, valency, and reduction potential as well as lattice volume change, lattice formation energy, and lattice mismatch. Upon secondary metal addition, we determined that the transformation of a cubic Cu2-xSe lattice will occur via cation exchange reaction when the change in symmetry to the resulting metal selenide phase(s) preserves mutually orthogonal lattice vectors. However, if the new lattice symmetry would be disrupted further, metal deposition is the likely outcome of secondary metal cation addition, forming metal-semiconductor heterostructures. These results suggest a synthesis design rule that relies on an intrinsic property of the material, not the reaction pathway, and indicates that more such factors may be found in other particle and synthetic systems.

6.
ACS Sens ; 4(8): 1986-1991, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31361472

RESUMO

Rare earth elements (REEs) are strategically important for national security and advanced technologies. Consequently, significant effort has been devoted towards increasing REE domestic production, including the extraction of REEs from coal, coal combustion byproducts, and their associated waste streams such as acid mine drainage. Analytical techniques for rapid quantification of REE content in aqueous phases can facilitate REE recovery through rapid identification of high-value waste streams. In this work, we show that BioMOF-100 can be used as a fluorescent-based sensitizer for emissive REE ion detection in water, providing rapid (<10 min) analysis times and sensitive detection (parts-per-billion detection limits) for terbium, dysprosium, samarium, europium, ytterbium, and neodymium, even in the presence of acids or secondary metals.


Assuntos
Adenina/química , Técnicas Eletroquímicas , Medições Luminescentes , Estruturas Metalorgânicas/química , Metais Terras Raras/análise , Zinco/química , Estrutura Molecular , Processos Fotoquímicos , Água/química
7.
Nano Lett ; 19(4): 2384-2388, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30855150

RESUMO

The syntheses, properties, and broad utility of noble metal plasmonic nanomaterials are now well-established. To capitalize on this exceptional utility, mitigate its cost, and potentially expand it, non-noble metal plasmonic materials have become a topic of widespread interest. As new plasmonic materials come online, it is important to understand and assess their ability to generate comparable or complementary plasmonic properties to their noble metal counterparts, including as both sensing and photoredox materials. Here, we study plasmon-driven chemistry on degenerately doped copper selenide (Cu2- xSe) nanoparticles. In particular, we observe plasmon-driven dimerization of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene on Cu2- xSe surfaces with yields comparable to those observed from noble metal nanoparticles. Overall, our results indicate that doped semiconductor nanoparticles are promising for light-driven chemistry technologies.

8.
J Am Chem Soc ; 141(5): 2161-2168, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30636428

RESUMO

We introduce the concept of domain building blocks (DBBs) as an effective approach to increasing the diversity and complexity of metal-organic frameworks (MOFs). DBBs are defined as distinct structural or compositional regions within a MOF material. Using the DBB approach, we illustrate how an immense number of multivariate MOF materials can be prepared from a small collection of molecular building blocks comprising the distinct domains. The multivariate nature of the MOFs is determined by the sequence of DBBs within the MOF. We then apply this approach to the construction of a rich library of UiO-67 stratified MOF (sMOF) particles consisting of multiple concentric DBBs. We discuss and highlight the negative consequences of linker exchange reactions on the compositional integrity of DBBs in the UiO-67 sMOFs and propose and demonstrate mitigation strategies. We also demonstrate that individual strata can be specifically postsynthetically addressed and manipulated. Finally, we demonstrate the versatility of these synthetic strategies through the preparation of sMOF-nanoparticle composite materials.

9.
Nano Lett ; 17(4): 2414-2419, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28306264

RESUMO

Recently, a wide variety of new nanoparticle compositions have been identified as potential plasmonic materials including earth-abundant metals such as aluminum, highly doped semiconductors, as well as metal pnictides. For semiconductor compositions, plasmonic properties may be tuned not only by nanoparticle size and shape, but also by charge carrier density which can be controlled via a variety of intrinsic and extrinsic doping strategies. Current methods to quantitatively determine charge carrier density primarily rely on interpretation of the nanoparticle extinction spectrum. However, interpretation of nanoparticle extinction spectra can be convoluted by factors such as particle ligands, size distribution and/or aggregation state which may impact the charge carrier information extracted. Therefore, alternative methods to quantify charge carrier density may be transformational in the development of these new materials and would facilitate previously inaccessible correlations between particle synthetic routes, crystallographic features, and emergent optoelectronic properties. Here, we report the use of 77Se solid state nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine charge carrier density in a variety of Cu2-xSe nanoparticle compositions and correlate this charge carrier density with particle crystallinity and extinction features. Importantly, we show that significant charge carrier populations are present even in nanoparticles without spectroscopically discernible plasmonic features and with crystal structures indistinguishable from fully reduced Cu2Se. These results highlight the potential impact of the NMR-based carrier density measurement, especially in the study of plasmon emergence in these systems (i.e., at low dopant concentrations).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...