Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 73(2): 244-252, 2021 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-33903886

RESUMO

The aim of this study was to investigate the effects of polarization program on the ability of macrophages to regulate iron metabolism. M1 and M2 macrophages were propagated in vitro from porcine alveolar macrophages 3D4/2 and polarized by cytokines. The 3D4/2 macrophages were treated with 20 ng/mL interferon gamma (IFN-γ) and 10 ng/mL interleukin-4 (IL-4) combined with 10 ng/mL macrophage colony-stimulating factor (M-CSF) to induce polarization to M1 and M2, respectively. After incubation for 24 h, the expression levels of inflammatory factors and iron-metabolism genes were determined using real-time qPCR, Western bot and immunofluorescence. The M1/M2 macrophages culture media supernatant was collected and used to treat porcine intestinal epithelial cells IPEC-J2. The proliferation ability of IPEC-J2 was detected using CCK-8 assay kit. Following exogenous addition of ammonium ferric citrate (FAC) to M1/M2 macrophages, the phagocytic function of macrophages was detected using fluorescein isothiocyanate-dextran (FITC-dextran) and flow cytometry. The results showed that, compared with control, M1 macrophages had higher mRNA levels of iron storage proteins (ferritin heavy and light polypeptide, i.e. FtH and FtL), hepcidin and lipocalin-2, as well as iron content. Moreover, iron enhanced the ability of M1 macrophages to phagocytize FITC-dextran. There was no significant change in these mRNA expression levels in M2 macrophages, but the mRNA expression levels of ferroportin and transferrin receptor were up-regulated. In addition, the conditioned media supernatant from M2 macrophages promoted cell proliferation of IPEC-J2. These findings indicate that M1 macrophages tend to lock iron in the cell and reduce extracellular iron content, thereby inhibiting the proliferation of extracellular bacteria. While M2 macrophages tend to excrete iron, which contributes to the proliferation of surrounding cells and thus promotes tissue repair.


Assuntos
Citocinas , Macrófagos , Animais , Ferritinas , Ferro/metabolismo , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Suínos
2.
Metallomics ; 11(2): 454-461, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30617365

RESUMO

Iron not only plays an important role in the physiological function of organisms but also is an essential nutrient for the growth of pathogens. There is a competing relationship between organisms and pathogens for the use of iron in the case of infection. The macrophage, as the first immune cell found to participate in iron metabolism, has a precise regulation system to maintain iron homeostasis in response to pathogen infection. However, few studies have compared the effects of different types of bacterial infections on the iron homeostasis of macrophages. In this study, we investigated the changes in the iron regulation of the macrophage 3D4/2 by the infection of the extracellular bacterium Escherichia coli K88 (E. coli K88) and the intracellular bacterium Salmonella typhimurium (S. typhimurium). We found that S. typhimurium infection reduced the uptake of extracellular iron, promoted the outflow transport of intracellular iron, and decreased the free iron ions for intracellular bacterial proliferation and utilization. However, the infection of E. coli K88 reversed iron regulation by promoting the uptake of extracellular iron, reducing the extracellular transport of intracellular iron and increasing the storage of iron in 3D4/2. The results demonstrated that macrophages had completely opposing regulations of iron metabolism in response to intracellular and extracellular bacteria. It suggested that the diversion of cellular iron traffic would be considered as an important defense mechanism for macrophages to reduce iron availability for bacteria, and the resistance of iron spread or the interruption of the assimilation of iron by bacteria would be beneficial in developing therapeutics for bacterial infection.


Assuntos
Macrófagos/metabolismo , Salmonella typhimurium/metabolismo , Animais , Escherichia coli/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Macrófagos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos
3.
Biol Trace Elem Res ; 190(2): 457-465, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456562

RESUMO

Iron plays an important role both in bacterial pathogenicity and in host defense mechanisms, which has frequently been underestimated. The primary purpose of this study was to investigate the influence of iron supplementation on the progression of bacterial infection. We used mice as an experimental model to supplement iron after Escherichia coli (E. coli) O157:H7 infection and found that iron supplementation exacerbated clinical symptoms of bacterial infection by increasing mortality and reducing body weight. Iron supplementation promoted the colonization of bacteria and enhanced inflammatory responses by increasing C-reaction protein level and the phagocytic capacity of PBMCs, as well as upregulating the expression of TNF-α and IL-1ß in E. coli O157:H7-challenged mice. In vitro cell experiment confirmed that an excess of iron would enhance the growth of E. coli O157:H7 and worsen the outcome of bacterial infection. Therefore, it is certainly plausible that iron supplementation in bacterial infection may worsen rather than improve host outcome.


Assuntos
Infecções por Escherichia coli/metabolismo , Escherichia coli O157/metabolismo , Ferro/metabolismo , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/isolamento & purificação , Ferro/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptomicina/administração & dosagem , Estreptomicina/uso terapêutico , Vancomicina/administração & dosagem , Vancomicina/uso terapêutico
4.
Oncotarget ; 8(39): 65386-65396, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029438

RESUMO

Iron is an essential nutrient that facilitates cell proliferation and growth, which plays a pivotal role in modulating the battle for survival between mammalian hosts and their pathogens. Pathogenic bacteria secrete siderophores to acquire iron from the host. However, lipocalin 2 (Lcn2), a siderophore-binding antimicrobial protein, binds to siderophores to prevent bacterial uptake of iron, which is critical for the control of systemic infection with Escherichia coli (E. coli). But few studies focus on the anti-infective response of Lcn2 in the intestines by inhibiting bacterial proliferation based on microbial iron metabolism. In this study, we showed that iron was sequestrated within cells in a piglet model of E. coli K88 infection. Siderophores was produced following E. coli K88 infection and siderophore-related genes expression was upregulated in iron-deficiency environment in vitro. Meanwhile, we found that Lcn2 expression was rapidly and robustly induced in jejunum by E. coli K88 infection and could be stimulated by IL-17 and IL-22. Furthermore, both Lcn2 induced in epithelial cells IPEC-1 and added exogenously as a recombinant protein could inhibit the growth of E. coli. We can conclude that Lcn2 is a crucial component of mucosal immune defense against intestinal infection with E. coli K88.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28760901

RESUMO

Hepcidin, an antimicrobial peptide, was discovered to integrate diverse signals from iron status and an infection threat and orchestrate a series of host-protective responses. Several studies have investigated the antimicrobial role of hepcidin, but the results have been controversial. Here, we aimed to examine the role of hepcidin in bacterial adherence and invasion in vitro We found that porcine hepcidin could decrease the amount of the extracellular pathogen enterotoxigenic Escherichia coli (ETEC) K88 that adhered to cells because it caused the aggregation of the bacteria. However, addition of hepcidin to macrophages infected with the intracellular pathogen Salmonella enterica serovar Typhimurium enhanced the intracellular growth of the pathogen through the degradation of ferroportin, an iron export protein, and then the sequestration of intracellular iron. Intracellular iron was unavailable by use of the iron chelator deferiprone (DFO), which reduced intracellular bacterial growth. These results demonstrate that hepcidin exhibits different functions in extracellular and intracellular bacterial infections, which suggests that different defense strategies should be taken to prevent bacterial infection.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Hepcidinas/farmacologia , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Animais , Células CACO-2 , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Deferiprona , Escherichia coli Enterotoxigênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Humanos , Ferro/metabolismo , Macrófagos/microbiologia , Piridonas/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Suínos
6.
Mediators Inflamm ; 2017: 8570818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286378

RESUMO

Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN-γ. The molecular signature of M1 macrophages showed high levels of iron storage (ferritin), a low level of iron export (ferroportin), and changes of iron regulators (hepcidin and transferrin receptors), which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1ß, TNF-α, and iNOS produced by IFN-γ-polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization.


Assuntos
Ferro/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/genética , Interleucina-6/genética , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Células RAW 264.7 , RNA Mensageiro/genética , Receptores da Transferrina/metabolismo , Fator de Necrose Tumoral alfa/genética
7.
Sci Rep ; 6: 27070, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230284

RESUMO

Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition.


Assuntos
Ácido Butírico/farmacologia , Defensinas/genética , Infecções por Escherichia coli/imunologia , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Inibidores de Histona Desacetilases/farmacologia , Animais , Ácido Butírico/uso terapêutico , Linhagem Celular , Colite/sangue , Colite/tratamento farmacológico , Colite/imunologia , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Defensinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Expressão Gênica , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Sus scrofa , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos
8.
Sci Rep ; 6: 25679, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181680

RESUMO

Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals.


Assuntos
Catelicidinas/farmacologia , Diarreia/veterinária , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Doenças dos Suínos/tratamento farmacológico , Animais , Citocinas/metabolismo , Diarreia/tratamento farmacológico , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/ultraestrutura , Microbiota/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Suínos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...