Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990049

RESUMO

Precise modulation of host-guest interactions between programmable Ln-MOFs (lanthanide metal-organic frameworks) and phosphate analytes holds immense promise for enabling novel functionalities in biosensing. However, the intricate relationship between these functionalities and structures remains largely elusive. Understanding this correlation is crucial for advancing the rational design of fluorescent biosensor technology. Presently, there exists a large research gap concerning the utilization of Ln-MOFsto monitor the conversion of ATP to ADP, which poses a limitation for kinase detection. In this work, we delve into the potential of Ln-MOFs to amplify the fluorescence response during the kinase-mediated ATP-to-ADP conversion. Six Eu-MOFs were synthesized and Eu-TPTC ([1,1':4',1″]-terphenyl-3,3'',5,5''-tetracarboxylic acid) was selected as a ratiometric fluorescent probe, which is most suitable for high-precision detection of creatine kinase activity through the differential response from ATP to ADP. The molecular -level mechanism was confirmed by density functional theory. Furthermore, a simple paper chip-based platform was constructed to realize the fast (20 min) and sensitive (limit of detection is 0.34 U/L) creatine kinase activity detection in biological samples. Ln-MOF-phosphate interactions offer promising avenues for kinase activity assays and hold the potential for precise customization of analytical chemistry.

2.
Anal Chem ; 96(27): 10953-10961, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922180

RESUMO

Detection of circulating tumor DNA (ctDNA) in liquid biopsy is of great importance for tumor diagnosis but difficult due to its low amount in bodily fluids. Herein, a novel ctDNA detection platform is established by quantifying DNA amplification by-product pyrophosphate (PPi) using a newly designed bivariable lanthanide metal-organic framework (Ln-MOF), namely, Ce/Eu-DPA MOF (CE-24, DPA = pyridine-2,6-dicarboxylic acid). CE-24 MOF exhibits ultrafast dual-response (fluorescence enhancement and enzyme-activity inhibition) to PPi stimuli by virtue of host-guest interaction. The platform is applied to detecting colon carcinoma-related ctDNA (KARS G12D mutation) combined with the isothermal nucleic acid exponential amplification reaction (EXPAR). ctDNA triggers the generation of a large amount of PPi, and the ctDNA quantification is achieved through the ratio fluorescence/colorimetric dual-mode assay of PPi. The combination of the EXPAR and the dual-mode PPi sensing allows the ctDNA assay method to be low-cost, convenient, bioreaction-compatible (freedom from the interference of bioreaction systems), sensitive (limit of detection down to 101 fM), and suitable for on-site detection. To the best of our knowledge, this work is the first application of Ln-MOF for ctDNA detection, and it provides a novel universal strategy for the rapid detection of nucleic acid biomarkers in point-of-care scenarios.


Assuntos
DNA Tumoral Circulante , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/análise , Humanos , Elementos da Série dos Lantanídeos/química , Técnicas de Amplificação de Ácido Nucleico , Difosfatos , Limite de Detecção
3.
Anal Chem ; 96(24): 9984-9993, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833588

RESUMO

Metal-organic frameworks (MOFs) show unique advantages in simulating the dynamics and fidelity of natural coordination. Inspired by zinc finger protein, a second linker was introduced to affect the homogeneous MOF system and thus facilitate the emergence of diverse functionalities. Under the systematic identification of 12 MOF species (i.e., metal ions, linkers) and 6 second linkers (trigger), a dissipative system consisting of Co-BDC-NO2 and o-phenylenediamine (oPD) was screened out, which can rapidly and in situ generate a high photothermal complex (η = 36.9%). Meanwhile, both the carboxylation of epigenetic modifications and metal ion (Fe3+, Ni2+, Cu2+, Zn2+, Co2+ and Mn2+) screening were utilized to improve the local coordination environment so that the adaptable Co-MOF growth on the DNA strand was realized. Thus, epigenetic modification information on DNA was converted to an amplified metal ion signal, and then oPD was further introduced to generate bimodal dissipative signals by which a simple, high-sensitivity detection strategy of 5-hydroxymethylcytosine (LOD = 0.02%) and 5-formylcytosine (LOD = 0.025‰) was developed. The strategy provides one low-cost method (< 0.01 $/sample) for quantifying global epigenetic modifications, which greatly promotes epigenetic modification-based early disease diagnosis. This work also proposes a general heterocoordination design concept for molecular recognition and signal transduction, opening a new MOF-based sensing paradigm.


Assuntos
Cobalto , DNA , Epigênese Genética , Estruturas Metalorgânicas , Fenilenodiaminas , Estruturas Metalorgânicas/química , Cobalto/química , DNA/química , Fenilenodiaminas/química , 5-Metilcitosina/química , 5-Metilcitosina/análise , 5-Metilcitosina/análogos & derivados , Citosina/química , Citosina/análogos & derivados , Limite de Detecção
4.
ACS Omega ; 7(14): 11560-11569, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449979

RESUMO

Aircraft soot has a significant effect on the air quality and human health. The aim of this study is to investigate the evolution of soot morphology in free jet laminar diffusion flames between Chinese traditional aviation kerosene RP-3 and algae-based aviation biofuels. The differences in height, profile, and structural properties of soot between the RP-3 flame and biofuel flame are determined. A laboratory-made probe sampling method was applied for soot sample collection. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and elemental analyzers were used to analyze the collected soot particles. The average particle size of soot increases first and then decreases in both flames, and the size of biofuel primary particles is smaller than that of jet fuel RP-3 particles along the same flame height. At the flame tip, the primary particle sizes of RP-3 soot and biofuel soot are 22.7 and 15.6 mm, respectively. In comparison with the RP-3 soot, the nanostructure of biofuel soot particles along the same flame height exhibits a shorter fringe lattice, a larger fringe tortuosity, and a larger interlayer spacing, which indicate a higher degree of oxidation reactivity. Meanwhile, RP-3 soot particles have a lower H/C atom ratio and have greater intensity in X-ray diffraction, which indicates a more orderly and compact lattice structure. This study provides some references in studying the algae-based biofuel with regard to soot formation.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120942, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114634

RESUMO

L-glutathione (GSH) which has reducibility and integrated detoxification plays an important role in maintaining normal immune system function. Its abnormal levels are relevant to some clinical diseases. In this work, a facile ratiometric fluorescence sensor for GSH was designed based on MnO2 nanosheets, Thiamine hydrochloride (VB1) and Rhodamine 6G (R6G). VB1 could be oxidized into fluorescent ox-VB1 due to the strong oxidizing property of MnO2, and MnO2 nanosheets simultaneously could quench the fluorescence of R6G based on the inner filter effect (IFE). MnO2 could react with GSH to form Mn2+, which caused its losing oxidizing property and quenching capacity. According to this principle, the concentration of ox-VB1 diminished, resulting in its fluorescence intensity decreasing at 455 nm and the fluorescence of R6G recovering at 560 nm. Under optimal conditions, the VB1-MnO2-R6G detection system showed a wide linear range towards GSH in the range of 1.0-300.0 µmolL-1 with a low detection limit reaching 0.52 µmolL-1. Furthermore, the method was also applied in the determination of GSH in human serum.


Assuntos
Compostos de Manganês , Óxidos , Corantes Fluorescentes , Glutationa , Humanos , Limite de Detecção , Rodaminas , Tiamina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...