Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(5): 1804-1812, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312306

RESUMO

Metal hydroxides catalyze organic transformations and photochemical processes and serve as precursors for the oxide layers of functional multicomponent devices. However, no general methods are available for the preparation of stable water-soluble complexes of metal hydroxide nanocrystals (NCs) that might be more effective in catalysis and serve as versatile precursors for the reproducible fabrication of multicomponent devices. We now report that InIII-substituted monodefect Wells-Dawson (WD) polyoxometalate (POM) cluster anions, [α2-P2W17O61InIIIOH)]8-, serve as ligands for stable, water-soluble complexes, 1, of platelike, predominantly cubic-phase (dzhalindite) In(OH)3 NCs that after optimization contain ca. 10% InOOH. Images from cryogenic tranmsission electron microscopy reveal numerous WD ligands at the surfaces of platelike NCs, with average dimensions of 17 × 28 × 2 nm, each complexed by an average of ca. 450 InIII-substituted WD cluster anions and charge-balanced by 3600 Na+ countercations. Facilitated by the water solubility of 1, countercation exchange is used to stoichiometrically disperse ca. 1800 Cu2+ ions in an atomically homogeneous fashion around the surfaces of each NC core. The utility of this impregnation method is illustrated by using the ion-exchanged material as an electrocatalyst that reduces CO2 to CO 15 times faster per milligram of Cu than does K6Cu[P2CuII(H2O)W17O61] (control) alone. More generally, the findings point to POM complexation as a promising method for stabilizing and solubilizing reactive d-, p-, and f-block metal hydroxide NCs and for enabling their utilization as versatile components in the fabrication of functional multicomponent materials.

2.
J Am Chem Soc ; 142(16): 7295-7300, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233364

RESUMO

Among molecular building blocks, metal oxide cluster anions and their countercations provide multiple options for the self-assembly of functional materials. Currently, however, rational design concepts are limited to electrostatic interactions with metal or organic countercations or to the attachment and subsequent reactions of functionalized organic ligands. We now demonstrate that bridging µ-oxo linkages can be used to string together a bifunctional Keggin anion building block, [PNb2Mo10O40]5- (1), the diniobium(V) analogue of [PV2Mo10O40]5- (2). Induction of µ-oxo ligation between the NbV═O moieties of 1 in acetonitrile via step-growth polymerization gives linear polymers with entirely inorganic backbones, some comprising over 140 000 repeating units, each with a 3- charge, exceeding that of previously reported organic or inorganic polyelectrolytes. As the chain grows, its flexible µ-oxo-linked backbone, with associated countercations, coils into a compact 270 nm diameter spherical secondary structure as a result of electrostatic interactions not unlike those within ionic lattices. More generally, the findings point to new options for the rational design of multidimensional structures based on µ-oxo linkages between NbV═O-functionalized building blocks.

3.
J Am Chem Soc ; 141(36): 14078-14082, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31411886

RESUMO

The selective uptake of guests by capsules, cages, and containers, and porous solid-state materials such as zeolites and metal-organic frameworks (MOFs), is generally controlled by pore size and by the dimensions and chemical properties of interior host domains. For soluble and solid-state structures, however, few options are available for modifying their outer pores to impart chemoselectivity to the uptake of similarly sized guests. We now show that by using alkane-coated gold cores as structural building units (SBUs) for the hydrophobic self-assembly of water-soluble suprasphere hosts, ligand exchange can be used to tailor the chemical properties at the pores that provide access to their interiors. For polar polyethylene glycol functionalized ligands, occupancies after equal times increase linearly with the dipole moments of chloro-, nitro- dichloro-, and dinitro- (o-, m-, and p-) benzene guests. Selectivity is reversed, however, upon incorporation of hydrophobic ligands. The findings demonstrate how self-assembled gold-core SBUs, with replaceable ligands, inherently provide for rationally introducing finely tuned and quantitatively predictable chemoselectivity to host-guest chemistry in water.

4.
Angew Chem Int Ed Engl ; 58(20): 6584-6589, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30838757

RESUMO

Although metal oxide nanocrystals are often highly active, rapid aggregation (particularly in water) generally precludes detailed solution-state investigations of their catalytic reactions. This is equally true for visible-light-driven water oxidation with hematite α-Fe2 O3 nanocrystals, which bridge a conceptual divide between molecular complexes of iron and solid-state hematite photoanodes. We herein report that the aqueous solubility and remarkable stability of polyoxometalate (POM)-complexed hematite cores with 275 iron atoms enable investigations of visible-light-driven water oxidation at this frontier using the versatile toolbox of solution-state methods typically reserved for molecular catalysis. The use of these methods revealed a unique mechanism, understood as a general consequence of fundamental differences between reactions of solid-state metal oxides and freely diffusing "fragments" of the same material.

5.
Inorg Chem ; 58(2): 1012-1015, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30601663

RESUMO

Monolayer shells of polyoxotungstate cluster anions on gold nanoparticles in water were electrostatically stabilized by structurally integrated countercations, with formation constants, K, increasing in the order: Li+ < Na+ < K+ < TMA+ < Cs+ (TMA+ = tetramethylammonium). We now report that for hexaniobate cluster anions, K values increase in the same order, with the notable exception of TMA+, which is effectively unable to induce monolayer formation. These findings point to a new structural model in which hexaniobate anions form a spherical coordination polymer at the gold surface with alkali metal countercations serving as single-atom structural building units between hexaniobate linkers.

6.
Nat Commun ; 9(1): 4896, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459390

RESUMO

While molecular water-oxidation catalysts are remarkably rapid, oxidative and hydrolytic processes in water can convert their active transition metals to colloidal metal oxides or hydroxides that, while quite reactive, are insoluble or susceptible to precipitation. In response, we propose using oxidatively-inert ligands to harness the metal oxides themselves. This approach is demonstrated by covalently attaching entirely inorganic oxo-donor ligands (polyoxometalates) to 3-nm hematite cores, giving soluble anionic structures, highly resistant to aggregation, yet thermodynamically stable to oxidation and hydrolysis. Using orthoperiodate (at pH 8), and no added photosensitizers, the hematite-core complex catalyzes visible-light driven water oxidation for seven days (7600 turnovers) with no decrease in activity, far exceeding the documented lifetimes of molecular catalysts under turnover conditions in water. As such, a fundamental limitation of molecular complexes is entirely bypassed by using coordination chemistry to harness a transition-metal oxide as the reactive center of an inherently stable, homogeneous water-oxidation catalyst.

7.
Angew Chem Int Ed Engl ; 56(25): 7083-7087, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28508392

RESUMO

The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle-like organizations. Using cryo-TEM imaging and 1 H DOSY NMR spectroscopy, we then provide an unprecedented "solution-state" picture of how the micelle-like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water-soluble assemblies.

8.
Angew Chem Int Ed Engl ; 54(42): 12416-21, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-25900431

RESUMO

Polyoxometalate (POM) cluster anions are shown to serve as covalently coordinated ligands for anatase-TiO2 nanocrystals, giving isolable assemblies uniquely positioned between molecular macroanions and traditional colloidal nanoparticles. Na(+) salts of the water-soluble polyanionic structures are obtained by reacting amorphous TiO2 with the 1 nm lacunary ion, Na7 [α-XW11 O39 ] (X=P(5+) ), at 170 °C, after which an average of 55 α-PW11 O39 (7-) clusters are found as pentadentate ligands for Ti(IV) ions covalently linked to 6 nm single-crystal anatase cores. The attached POMs are reversible electron acceptors, the reduction potentials of which shift in a predictable fashion by changing the central heteroatom, X, directly influencing a model catalytic reaction. Just as POM cluster anions control the reactivities of metal centers in molecular complexes, directly coordinated POM ligands with tunable redox potentials now provide new options for rationally controlling the reactions of semiconductor nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...