Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(32): 22236-22246, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096501

RESUMO

Peptide-based frameworks aim to integrate protein architecture into solid-state materials using simpler building blocks. Despite the growing number of peptide frameworks, there are few strategies to rationally engineer essential properties like pore size and shape. Designing peptide assemblies is generally hindered by the difficulty of predicting complex networks of weak intermolecular interactions. Peptides conjugated to polyaromatic groups are a unique case where assembly appears to be strongly driven by π-π interactions, suggesting that rationally adjusting the geometry of the π-stackers could create novel structures. Here, we report peptide elongation as a simple mechanism to predictably tune the angle between the π-stacking groups to produce a remarkable diversity of pore shapes and sizes, including some that are mesoporous. Notably, rapid jumps in pore size and shape can occur with just a single amino acid insertion. The geometry of the π-stacking residues also significantly influences framework structure, representing an additional dimension for tuning. Lastly, sequence identity can also indirectly modulate the π-π interactions. By correlating each of these factors with detailed crystallographic data, we find that, despite the complexity of peptide structure, the shape and polarity of the tectons are straightforward predictors of framework structure. These guidelines are expected to accelerate the development of advanced porous materials with protein-like capabilities.


Assuntos
Peptídeos , Peptídeos/química , Porosidade , Modelos Moleculares , Peptidomiméticos/química , Peptidomiméticos/síntese química
2.
Chem Soc Rev ; 53(8): 3640-3655, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450536

RESUMO

Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.


Assuntos
Ligação de Hidrogênio , Peptídeos , Peptídeos/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA