Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 563-574, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232960

RESUMO

The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.


Assuntos
Descoberta de Drogas , SARS-CoV-2 , Descoberta de Drogas/métodos , SARS-CoV-2/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular
2.
Biosensors (Basel) ; 13(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185530

RESUMO

Cardiac vascular diseases, especially acute myocardial infarction (AMI), are one of the leading causes of death worldwide. Therefore cardio-specific biomarkers such as cardiac troponin I (cTnI) play an essential role in the field of diagnostics. In order to enable rapid and accurate measurement of cTnI with the potential of online measurements, a chemiluminescence-based immunosensor is presented as a proof of concept. A flow cell was designed and combined with a sensitive CMOS camera allowing sensitive optical readout. In addition, a microfluidic setup was established, which achieved selective and quasi-online cTnI determination within ten minutes. The sensor was tested with recombinant cTnI in phosphate buffer and demonstrated cTnI measurements in the concentration range of 2-25 µg/L. With the optimized system, a limit of detection (LoD) of 0.6 µg/L (23 pmol/L) was achieved. Furthermore, the selectivity of the immunosensor was investigated with other recombinant proteins, such as cTnT, and cTnC, at a level of 16 µg/L. No cross-reactivity could be observed. Measurements with diluted blood plasma and serum resulted in an LoD of 60 µg/L (2.4 nmol/L) and 70 µg/L (2.9 nmol/L), respectively.


Assuntos
Técnicas Biossensoriais , Infarto do Miocárdio , Humanos , Troponina I , Luminescência , Imunoensaio , Infarto do Miocárdio/diagnóstico , Biomarcadores
3.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36799129

RESUMO

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Assuntos
Neoplasias Colorretais , Pirazóis , Humanos , Pirazóis/química , Pirimidinas/farmacologia , Pirimidinas/química , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
4.
ACS Chem Biol ; 17(11): 3159-3168, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36318238

RESUMO

The bile-acid sensing nuclear farnesoid X receptor (FXR) is an attractive target for the treatment of hepatic and metabolic diseases, but application of this chemotherapeutic concept remains limited due to adverse effects of FXR activation observed in clinical trials. To elucidate the mechanistic basis of FXR activation at the molecular level, we have systematically studied FXR co-regulator interactions and dimerization in response to seven chemically diverse FXR ligands. Different molecular effects on FXR activation mediated by different scaffolds were evident and aligned with characteristic structural changes within the ligand binding domain of FXR. A partial FXR agonist acted mainly through co-repressor displacement from FXR and caused an FXR-regulated gene expression pattern markedly differing from FXR agonist effects. These results suggest selective modulation of FXR dimerization and co-regulator interactions for different ligands, offering a potential avenue for the design of gene- or tissue-selective FXR modulators.


Assuntos
Ácidos e Sais Biliares , Receptores Citoplasmáticos e Nucleares , Ligantes , Domínios Proteicos , Núcleo Celular
5.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36115062

RESUMO

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Ligantes , Desenho de Fármacos
6.
J Mol Biol ; 434(16): 167720, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839840

RESUMO

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.


Assuntos
ADP-Ribosilação , Adenosina/análogos & derivados , Inibidores de Protease de Coronavírus , Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , ADP-Ribosilação/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Adenosina Difosfato Ribose/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Humanos , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
7.
Front Mol Biosci ; 8: 653148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041264

RESUMO

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

8.
ChemMedChem ; 16(10): 1667-1679, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33508167

RESUMO

Lead-optimization strategies for compounds targeting c-Myc G-quadruplex (G4) DNA are being pursued to develop anticancer drugs. Here, we investigate the structure-activity- relationship (SAR) of a newly synthesized series of molecules based on the pyrrolidine-substituted 5-nitro indole scaffold to target G4 DNA. Our synthesized series allows modulation of flexible elements with a structurally preserved scaffold. Biological and biophysical analyses illustrate that substituted 5-nitroindole scaffolds bind to the c-Myc promoter G-quadruplex. These compounds downregulate c-Myc expression and induce cell-cycle arrest in the sub-G1/G1 phase in cancer cells. They further increase the concentration of intracellular reactive oxygen species. NMR spectra show that three of the newly synthesized compounds interact with the terminal G-quartets (5'- and 3'-ends) in a 2 : 1 stoichiometry.


Assuntos
Antineoplásicos/farmacologia , Quadruplex G/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Angew Chem Int Ed Engl ; 59(36): 15656-15664, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602600

RESUMO

The RHO gene encodes the G-protein-coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light-activated state by solution and MAS-NMR spectroscopy. We found two long-lived dark states for the G90D mutant with the 11-cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11-cis retinal caused by the mutation-induced distortion on the salt bridge formation in the binding pocket. Time-resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle.


Assuntos
Luz , Doenças Retinianas/genética , Rodopsina/genética , Animais , Bovinos , Modelos Moleculares , Mutação , Conformação Proteica , Dobramento de Proteína , Doenças Retinianas/metabolismo , Rodopsina/química , Rodopsina/metabolismo
10.
Nat Commun ; 10(1): 2915, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266946

RESUMO

The bile acid-sensing transcription factor farnesoid X receptor (FXR) regulates multiple metabolic processes. Modulation of FXR is desired to overcome several metabolic pathologies but pharmacological administration of full FXR agonists has been plagued by mechanism-based side effects. We have developed a modulator that partially activates FXR in vitro and in mice. Here we report the elucidation of the molecular mechanism that drives partial FXR activation by crystallography- and NMR-based structural biology. Natural and synthetic FXR agonists stabilize formation of an extended helix α11 and the α11-α12 loop upon binding. This strengthens a network of hydrogen bonds, repositions helix α12 and enables co-activator recruitment. Partial agonism in contrast is conferred by a kink in helix α11 that destabilizes the α11-α12 loop, a critical determinant for helix α12 orientation. Thereby, the synthetic partial agonist induces conformational states, capable of recruiting both co-repressors and co-activators leading to an equilibrium of co-activator and co-repressor binding.


Assuntos
Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/química , Animais , Linhagem Celular , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Conformação Proteica em alfa-Hélice , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
ChemMedChem ; 13(16): 1629-1633, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29928781

RESUMO

Erythropoietin-producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP-BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity.


Assuntos
Pirazóis/metabolismo , Pirimidinas/metabolismo , Receptor EphA2/metabolismo , Receptor EphB4/metabolismo , Cristalografia por Raios X , Humanos , Isomerismo , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor EphA2/química , Receptor EphB4/química
12.
ACS Chem Biol ; 13(8): 1921-1931, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29927572

RESUMO

The Polo-like kinases (Plks) are an evolutionary conserved family of Ser/Thr protein kinases that possess, in addition to the classical kinase domain at the N-terminus, a C-terminal polo-box domain (PBD) that binds to phosphorylated proteins and modulates the kinase activity and its localization. Plk1, which regulates the formation of the mitotic spindle, has emerged as a validated drug target for the treatment of cancer, because it is required for numerous types of cancer cells but not for the cell division in noncancer cells. Here, we employed chemical biology methods to investigate the allosteric communication between the PBD and the catalytic domain of Plk1. We identified small compounds that bind to the catalytic domain and inhibit or enhance the interaction of Plk1 with the phosphorylated peptide PoloBoxtide in vitro. In cells, two new allosteric Plk1 inhibitors affected the proliferation of cancer cells in culture and the cell cycle but had distinct phenotypic effects on spindle formation. Both compounds inhibited Plk1 signaling, indicating that they specifically act on Plk1 in cultured cells.


Assuntos
Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/antagonistas & inibidores , Ativadores de Enzimas/química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Centrossomo/metabolismo , Ativadores de Enzimas/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Cinetocoros/metabolismo , Oligopeptídeos/química , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Spodoptera/química , Quinase 1 Polo-Like
13.
Chembiochem ; 17(23): 2257-2263, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27685543

RESUMO

The receptor tyrosine kinase EPHA2 is overexpressed in several cancers (breast, head and neck, non-small-cell lung cancer). Small-molecule-based inhibition of the EPHA2 kinase domain (KD) is seen as an important strategy for therapeutic intervention. However, obtaining structural information by crystallography or NMR spectroscopy for drug discovery is severely hampered by the lack of pure, homogeneous protein. Here, different fragments of the EPHA2 KD were expressed and purified from both bacterial (Escherichia coli, BL21(DE3) cells) and insect cells (Spodoptera frugiperda, Sf9 cells).1 H,15 N HSQC was used to determine the proper folding and homogeneity of all the constructs. Protein from E. coli was well-folded but unstable, and it did not crystallize. However, a construct (D596-G900) produced in Sf9 cells yielded homogenous, well-folded protein that crystallized readily, thereby resulting in eleven new EPHA2-ligand crystal structures. We have also established a strategy for selective and uniform 15 N-amino acid labeling of EPHA2 KD in Sf9 cells for investigating dynamics and EPHA2-drug interactions by NMR.


Assuntos
Fracionamento Químico , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Receptor EphA2/química , Animais , Cristalografia por Raios X , Escherichia coli/citologia , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Receptor EphA2/biossíntese , Receptor EphA2/isolamento & purificação , Spodoptera/citologia , Spodoptera/metabolismo
14.
J Biol Chem ; 290(26): 16415-30, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25979334

RESUMO

Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Podospora/enzimologia , S-Adenosilmetionina/metabolismo , Biofísica , Cristalografia por Raios X , Flavonoides/química , Flavonoides/metabolismo , Proteínas Fúngicas/genética , Metiltransferases/genética , Estresse Oxidativo , Podospora/química , Podospora/genética , Podospora/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...