Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3860, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242155

RESUMO

The insulin/insulin-like growth factor signalling axis is an evolutionary ancient and highly conserved hormonal system involved in the regulation of metabolism, growth and lifespan in animals. Human insulin is stored in the pancreas, while insulin-like growth factor-1 (IGF-1) is maintained in blood in complexes with IGF-binding proteins (IGFBP1-6). Insect insulin-like polypeptide binding proteins (IBPs) have been considered as IGFBP-like structural and functional homologues. Here, we report structures of the Drosophila IBP Imp-L2 in its free form and bound to Drosophila insulin-like peptide 5 and human IGF-1. Imp-L2 contains two immunoglobulin-like fold domains and its architecture is unrelated to human IGFBPs, suggesting a distinct strategy for bioavailability regulation of insulin-like hormones. Similar hormone binding modes may exist in other insect vectors, as the IBP sequences are highly conserved. Therefore, these findings may open research routes towards a rational interference of transmission of diseases such as malaria, dengue and yellow fevers.


Assuntos
Proteínas de Drosophila/química , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Animais , Disponibilidade Biológica , Drosophila , Humanos , Insulina/farmacocinética , Fator de Crescimento Insulin-Like I/química , Conformação Proteica
2.
J Phys Chem B ; 122(44): 10069-10076, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153414

RESUMO

The oligomeric state of the storage form of human insulin in the pancreas, which may be affected by several endogenous components of ß-cell storage granules such as arginine, is not known. Here, the effect of arginine on insulin oligomerization is investigated independently by protein crystallography, molecular dynamics simulations, and capillary electrophoresis. The combined results point to a strong effect of ionic strength on insulin assembly. Molecular simulations and electrophoretic measurements at low/mM salt concentrations show no significant effect of arginine on insulin aggregation. In contrast, crystallographic data at high/molar ionic strength indicate inhibition of insulin hexamerization by arginine due to its binding at the site relevant for intermolecular contacts, which was also observed in MD simulations. Our results thus bracket the in vivo situation in pancreatic ß-cell storage granules, where the ionic strength is estimated to be in the hundreds of millimolar to submolar range. The present findings add to a molecular understanding of in vivo insulin oligomerization and storage, with additional implications for insulin stability in arginine-rich injections.


Assuntos
Arginina/metabolismo , Insulina/metabolismo , Arginina/química , Cristalografia por Raios X , Eletroforese Capilar , Humanos , Insulina/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Ligação Proteica , Multimerização Proteica
3.
J Biol Chem ; 292(20): 8342-8355, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28348075

RESUMO

Human insulin is a pivotal protein hormone controlling metabolism, growth, and aging and whose malfunctioning underlies diabetes, some cancers, and neurodegeneration. Despite its central position in human physiology, the in vivo oligomeric state and conformation of insulin in its storage granules in the pancreas are not known. In contrast, many in vitro structures of hexamers of this hormone are available and fall into three conformational states: T6, T3Rf3, and R6 As there is strong evidence for accumulation of neurotransmitters, such as serotonin and dopamine, in insulin storage granules in pancreatic ß-cells, we probed by molecular dynamics (MD) and protein crystallography (PC) if these endogenous ligands affect and stabilize insulin oligomers. Parallel studies independently converged on the observation that serotonin binds well within the insulin hexamer (site I), stabilizing it in the T3R3 conformation. Both methods indicated serotonin binding on the hexamer surface (site III) as well. MD, but not PC, indicated that dopamine was also a good site III ligand. Some of the PC studies also included arginine, which may be abundant in insulin granules upon processing of pro-insulin, and stable T3R3 hexamers loaded with both serotonin and arginine were obtained. The MD and PC results were supported further by in solution spectroscopic studies with R-state-specific chromophore. Our results indicate that the T3R3 oligomer is a plausible insulin pancreatic storage form, resulting from its complex interplay with neurotransmitters, and pro-insulin processing products. These findings may have implications for clinical insulin formulations.


Assuntos
Simulação por Computador , Células Secretoras de Insulina , Insulina , Modelos Biológicos , Neurotransmissores/metabolismo , Multimerização Proteica , Vesículas Secretórias , Serotonina/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Simulação de Dinâmica Molecular , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...